ACCUMULATION OF MICROPLASTICS IN THE BIVALVE MOLLUSC UNIO TUMIDUS UNDER EXPERIMENTAL AND FIELD EXPOSURES

V. V. Martyniuk


DOI: http://dx.doi.org/10.30970/sbi.1604.694

Abstract


Background. An increased production and widespread use of plastics have made microplastic (MP) pollution a serious environmental problem. Most of MP found in the marine environment comes from rivers, however, the freshwater pollution by MP is less studied. Filter-feeding organisms, like bivalve molluscs, are the primary target orga­nisms for MP. Nevertheless, the studies of MP accumulation in the bivalves mainly focus on the marine species and depend on expensive equipment. The goal of this study was to detect the presence of MP in the body of freshwater bivalve mollusc Unio tumidus from a typical field site in Western Ukraine and under laboratory sub-chronic exposure to microplastic at a typical concentration for freshwater.
Materials and Methods. For the study, we exposed molluscs to waterborne MP (0.1–0.5 mm) in the concentration of 1.0 mg L-1 corresponding to ~850 items L-1 for 14 days and analysed the concentration of MP in the soft tissues and water every two days. The molluscs and water from the field site, confirmed as polluted one, were also analysed. To estimate the number of MP particles, we used a modified method based on the cleavage of biological materials with potassium hydroxide and hydrogen peroxide and microscopic analysis of MP after the staining with fluorescent Nile Red dye.
Results. The MP concentration in the soft tissues of the specimens from the refe­rence site was 9.5 items per soft body and demonstrated a bell-shaped response curve throughout the 14-days exposure with maximum of 327.0 items per body on the 10th day and a negative correlation with the concentration of MP in the experimental tank that changed within the range of 590–790 items L-1. The level of MP in the field specimens from the polluted area was 76.5 items per body, and in the water, it was about 103 items L-1. The maximum MP abundance factor, calculated as CFi = Ci/C0 (utilising the value 9.5 as C0), was 83.18 and 8.05 for 10 days of exposure and field specimens, correspondingly.
Conclusion. These data indicate the high accumulative ability of U. tumidus towards microplastics and draw attention to the utilizing of this species for the biomonitoring of microplastics pollution and depuration of surface waters from it.


Keywords


microplastics, Unio tumidus, accumulation, microscopy, Nile Red

Full Text:

PDF

References


Al Rayaan, M. B. (2021). Recent advancements of thermochemical conversion of plastic waste to biofuel-A review. Cleaner Engineering and Technology, 2, 100062. doi:10.1016/j.clet.2021.100062
CrossrefGoogle Scholar

Catarino, A. I., Thompson, R., Sanderson, W., & Henry, T. B. (2016). Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environmental Toxicology and Chemistry, 36(4), 947-951. doi:10.1002/etc.3608
CrossrefPubMedGoogle Scholar

Cho, Y., Shim, W. J., Jang, M., Han, G. M., & Hong, S. H. (2021). Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. Environmental Pollution, 270, 116175. doi:10.1016/j.envpol.2020.116175
CrossrefPubMedGoogle Scholar

Cole, M. (2016). A novel method for preparing microplastic fibers. Scientific Reports, 6, 34519. doi:10.1038/srep34519
CrossrefPubMedPMCGoogle Scholar

Cozzolino, L., Carmen, B., Zardi, G. I., Repetto, L., & Nicastro, K. R. (2021). Microplastics in commercial bivalves harvested from intertidal seagrasses and sandbanks in the Ria Formosa lagoon, Portugal. Marine and Freshwater Research, 72(7), 1092-1099. doi:10.1071/mf20202
CrossrefGoogle Scholar

Danopoulos, E., Jenner, L. C., Twiddy, M., & Rotchell, J. M. (2020). Microplastic contamination of seafood intended for human consumption: a systematic review and meta-analysis. Environmental Health Perspectives, 128(12), 126002. doi:10.1289/ehp7171
CrossrefPubMedPMCGoogle Scholar

Davidson, K., & Dudas, S. E. (2016). Microplastic ingestion by wild and cultured Manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Archives of Environmental Contamination and Toxicology, 71(2), 147-156. doi:10.1007/s00244-016-0286-4
CrossrefPubMedGoogle Scholar

Desforges, J. P., Galbraith, M., Dangerfield, N., & Ross, P. S. (2014). Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Marine Pollution Bulletin, 79(1-2), 94-99. doi:10.1016/j.marpolbul.2013.12.035
CrossrefPubMedGoogle Scholar

Ding, J., Sun, Y., He, C., Li, J., & Li, F. (2022). Towards risk assessments of microplastics in bivalve mollusks globally. Journal of Marine Science and Engineering, 10(2), 288. doi:10.3390/ jmse10020288
CrossrefGoogle Scholar

Eriksen, M., Lebreton, L. C., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS One, 9(12), e111913. doi:10.1371/journal.pone.0111913
CrossrefPubMedPMCGoogle Scholar

Far, H., & Nejadi, S. (2021). Experimental investigation on interface shear strength of composite PVC encased macro-synthetic fibre reinforced concrete wall. Structures, 34, 729-737. doi:10.1016/j.istruc.2021.08.008
CrossrefGoogle Scholar

Fernández, B., & Albentosa, M. (2019). Insights into the uptake, elimination and accumulation of microplastics in mussel. Environmental Pollution, 249, 321-329. doi:10.1016/j.envpol.2019.03.037
CrossrefPubMedGoogle Scholar

Gnatyshyna, L., Khoma, V., Mishchuk, O., Martinyuk, V., Spriņģe, G., & Stoliar, O. (2020). Multi-marker study of the responses of the Unio tumidus from the areas of small and micro hydropower plants at the Dniester River Basin, Ukraine. Environmental science and pollution research international, 27(10), 11038-11049. doi:10.1007/s11356-020-07698-4
CrossrefPubMedGoogle Scholar

Guilhermino, L., Vieira, L. R., Ribeiro, D., Tavares, A. S., Cardoso, V., Alves, A., & Almeida, J. M. (2018). Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. The Science of the Total Environment, 622-623, 1131-1142. doi:10.1016/j.scitotenv.2017.12.020
CrossrefPubMedGoogle Scholar

Hurt, R., O'Reilly, C. M., & Perry, W. L. (2020). Microplastic prevalence in two fish species in two US reservoirs. Limnology and Oceanography Letters, 5(1), 147-153. doi:10.1002/lol2.10140
CrossrefGoogle Scholar

Kaile, N., Lindivat, M., Elio, J., Thuestad, G., Crowley, Q. G., & Hoell, I. A. (2020). Preliminary results from detection of microplastics in liquid samples using flow cytometry. Frontiers in Marine Science, 7, 12. doi:10.3389/fmars.2020.552688
CrossrefGoogle Scholar

Khoma, V. V., Gnatyshyna, L. L., Martinyuk, V. V., Mackiv, T. R., Mishchuk, N. Y., & Stoliar, O. B. (2020). Metallothioneins contribution to the response of bivalve mollusk to xenobiotics. Ukrainian Biochemical Journal, 92(5), 87-96. doi:10.15407/ubj92.05.087
CrossrefGoogle Scholar

Klasios, N., De Frond, H., Miller, E., Sedlak, M., & Rochman, C. M. (2021). Microplastics and other anthropogenic particles are prevalent in mussels from San Francisco Bay, and show no correlation with PAHs. Environmental Pollution, 271, 116260. doi:10.1016/j.envpol.2020.116260
CrossrefPubMedGoogle Scholar

Lasee, S., Mauricio, J., Thompson, W. A., Karnjanapiboonwong, A., Kasumba, J., Subbiah, S., Morse, A. N., Anderson, T. A. (2017). Microplastics in a freshwater environment receiving treated wastewater effluent. Integrated Environmental Assessment and Management, 13(3), 528-532. doi:10.1002/ieam.1915
CrossrefPubMedGoogle Scholar

Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., Li, D., & Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177-184. doi:10.1016/j.envpol.2016.04.012
CrossrefPubMedGoogle Scholar

Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7, 44501. doi:10.1038/srep44501
CrossrefPubMedPMCGoogle Scholar

Martyniuk, V., Khoma, V., Matskiv, T., Baranovsky, V., Orlova-Hudim, K., Gylytė, B., Symchak, R., Matciuk, O., Gnatyshyna, L., Manusadžianas, L., & Stoliar, O. (2022). Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 261, 109425. doi:10.1016/j.cbpc.2022.109425
CrossrefPubMedGoogle Scholar

Masura, J., Baker, J., Foster, G., Arthur, C., & Herring, C. (2015). Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48. Available from https://repository.library.noaa.gov/view/noaa/10296
Google Scholar

Moore, C. J. (2008). Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental Research, 108(2), 131-139. doi: 10.1016/j.envres.2008.07.025
CrossrefPubMedGoogle Scholar

Moreschi, A. C., Callil, C. T., Christo, S. W., Ferreira Junior, A. L., Nardes, C., de Faria, É., & Girard, P. (2020). Filtration, assimilation and elimination of microplastics by freshwater bivalves. Case Studies in Chemical and Environmental Engineering, 2, 100053. doi:10.1016/j.cscee.2020.100053
CrossrefGoogle Scholar

Nolte, T. M., Hartmann, N. B, Kleijn, J. M, Garnæs, J., van de Meent, D., Jan Hendriks, A., & Baun, A. (2017). The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology, 183, 11-20. doi:10.1016/j.aquatox.2016.12.005
CrossrefPubMedGoogle Scholar

Pedersen, A. F., Gopalakrishnan, K., Boegehold, A. G., Peraino, N. J., Westrick, J. A., & Kashian, D. R. (2020). Microplastic ingestion by quagga mussels, Dreissena bugensis, and its effects on physiological processes. Environmental Pollution, 260, 113964. doi:10.1016/j.envpol.2020.113964
CrossrefPubMedGoogle Scholar

Prata, J. C., Reis, V., Matos, J., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). The Science of the Total Environment, 690, 1277-1283. doi:10.1016/j.scitotenv.2019.07.060
CrossrefPubMedGoogle Scholar

Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., Teh, F. C., Werorilangi, S., & Teh, S. J. (2015). Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports, 5, 14340. doi:10.1038/srep14340
CrossrefPubMedPMCGoogle Scholar

Su, L., Cai, H., Kolandhasamy, P., Wu, C., Rochman, C. M., & Shi, H. (2018). Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environmental Pollution, 234, 347-355. doi:10.1016/j.envpol.2017.11.075
CrossrefPubMedGoogle Scholar

Von Moos, N., Burkhardt-Holm, P., & Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environmental Science & Technology, 46(20), 11327-11335. doi:10.1021/es302332w
CrossrefPubMedGoogle Scholar

Wegner, A., Besseling, E., Foekema, E. M., Kamermans, P., & Koelmans, A. A. (2012). Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environmental Toxicology and Chemistry, 31(11), 2490-2497. doi:10.1002/etc.1984
CrossrefPubMedGoogle Scholar

Wesch, C., Bredimus, K., Paulus, M., & Klein, R. (2016) Towards the suitable monitoring of ingestion of microplastics by marine biota: a review. Environmental Pollution, 218, 1200-1208. doi:10.1016/j.envpol.2016.08.076
CrossrefPubMedGoogle Scholar

Yeung, W. S., Loh, W. W., Lau, H. H., Loh, X. J., & Lim, J. Y. (2021). Catalysts developed from waste plastics: a versatile system for biomass conversion. Materials Today Chemistry, 21, 100524. doi:10.1016/j.mtchem.2021.100524
CrossrefGoogle Scholar

Zhang, Z., & Han, X. (2019). Polymer antibacterial agent immobilized polyethylene films as efficient antibacterial cling film. Materials Today Chemistry, 105, 110088. doi:10.1016/j.msec.2019.110088
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 V. V. Martyniuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.