ACCUMULATION OF MICROPLASTICS IN THE BIVALVE MOLLUSC UNIO TUMIDUS UNDER EXPERIMENTAL AND FIELD EXPOSURES
DOI: http://dx.doi.org/10.30970/sbi.1604.694
Abstract
Background. An increased production and widespread use of plastics have made microplastic (MP) pollution a serious environmental problem. Most of MP found in the marine environment comes from rivers, however, the freshwater pollution by MP is less studied. Filter-feeding organisms, like bivalve molluscs, are the primary target organisms for MP. Nevertheless, the studies of MP accumulation in the bivalves mainly focus on the marine species and depend on expensive equipment. The goal of this study was to detect the presence of MP in the body of freshwater bivalve mollusc Unio tumidus from a typical field site in Western Ukraine and under laboratory sub-chronic exposure to microplastic at a typical concentration for freshwater.
Materials and Methods. For the study, we exposed molluscs to waterborne MP (0.1–0.5 mm) in the concentration of 1.0 mg L-1 corresponding to ~850 items L-1 for 14 days and analysed the concentration of MP in the soft tissues and water every two days. The molluscs and water from the field site, confirmed as polluted one, were also analysed. To estimate the number of MP particles, we used a modified method based on the cleavage of biological materials with potassium hydroxide and hydrogen peroxide and microscopic analysis of MP after the staining with fluorescent Nile Red dye.
Results. The MP concentration in the soft tissues of the specimens from the reference site was 9.5 items per soft body and demonstrated a bell-shaped response curve throughout the 14-days exposure with maximum of 327.0 items per body on the 10th day and a negative correlation with the concentration of MP in the experimental tank that changed within the range of 590–790 items L-1. The level of MP in the field specimens from the polluted area was 76.5 items per body, and in the water, it was about 103 items L-1. The maximum MP abundance factor, calculated as CFi = Ci/C0 (utilising the value 9.5 as C0), was 83.18 and 8.05 for 10 days of exposure and field specimens, correspondingly.
Conclusion. These data indicate the high accumulative ability of U. tumidus towards microplastics and draw attention to the utilizing of this species for the biomonitoring of microplastics pollution and depuration of surface waters from it.
Keywords
Full Text:
PDFReferences
Al Rayaan, M. B. (2021). Recent advancements of thermochemical conversion of plastic waste to biofuel-A review. Cleaner Engineering and Technology, 2, 100062. doi:10.1016/j.clet.2021.100062 Crossref ● Google Scholar | ||||
| ||||
Catarino, A. I., Thompson, R., Sanderson, W., & Henry, T. B. (2016). Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environmental Toxicology and Chemistry, 36(4), 947-951. doi:10.1002/etc.3608 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cho, Y., Shim, W. J., Jang, M., Han, G. M., & Hong, S. H. (2021). Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. Environmental Pollution, 270, 116175. doi:10.1016/j.envpol.2020.116175 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cole, M. (2016). A novel method for preparing microplastic fibers. Scientific Reports, 6, 34519. doi:10.1038/srep34519 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Cozzolino, L., Carmen, B., Zardi, G. I., Repetto, L., & Nicastro, K. R. (2021). Microplastics in commercial bivalves harvested from intertidal seagrasses and sandbanks in the Ria Formosa lagoon, Portugal. Marine and Freshwater Research, 72(7), 1092-1099. doi:10.1071/mf20202 Crossref ● Google Scholar | ||||
| ||||
Danopoulos, E., Jenner, L. C., Twiddy, M., & Rotchell, J. M. (2020). Microplastic contamination of seafood intended for human consumption: a systematic review and meta-analysis. Environmental Health Perspectives, 128(12), 126002. doi:10.1289/ehp7171 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Davidson, K., & Dudas, S. E. (2016). Microplastic ingestion by wild and cultured Manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Archives of Environmental Contamination and Toxicology, 71(2), 147-156. doi:10.1007/s00244-016-0286-4 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Desforges, J. P., Galbraith, M., Dangerfield, N., & Ross, P. S. (2014). Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Marine Pollution Bulletin, 79(1-2), 94-99. doi:10.1016/j.marpolbul.2013.12.035 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ding, J., Sun, Y., He, C., Li, J., & Li, F. (2022). Towards risk assessments of microplastics in bivalve mollusks globally. Journal of Marine Science and Engineering, 10(2), 288. doi:10.3390/ jmse10020288 Crossref ● Google Scholar | ||||
| ||||
Eriksen, M., Lebreton, L. C., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS One, 9(12), e111913. doi:10.1371/journal.pone.0111913 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Far, H., & Nejadi, S. (2021). Experimental investigation on interface shear strength of composite PVC encased macro-synthetic fibre reinforced concrete wall. Structures, 34, 729-737. doi:10.1016/j.istruc.2021.08.008 Crossref ● Google Scholar | ||||
| ||||
Fernández, B., & Albentosa, M. (2019). Insights into the uptake, elimination and accumulation of microplastics in mussel. Environmental Pollution, 249, 321-329. doi:10.1016/j.envpol.2019.03.037 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gnatyshyna, L., Khoma, V., Mishchuk, O., Martinyuk, V., Spriņģe, G., & Stoliar, O. (2020). Multi-marker study of the responses of the Unio tumidus from the areas of small and micro hydropower plants at the Dniester River Basin, Ukraine. Environmental science and pollution research international, 27(10), 11038-11049. doi:10.1007/s11356-020-07698-4 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Guilhermino, L., Vieira, L. R., Ribeiro, D., Tavares, A. S., Cardoso, V., Alves, A., & Almeida, J. M. (2018). Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. The Science of the Total Environment, 622-623, 1131-1142. doi:10.1016/j.scitotenv.2017.12.020 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hurt, R., O'Reilly, C. M., & Perry, W. L. (2020). Microplastic prevalence in two fish species in two US reservoirs. Limnology and Oceanography Letters, 5(1), 147-153. doi:10.1002/lol2.10140 Crossref ● Google Scholar | ||||
| ||||
Kaile, N., Lindivat, M., Elio, J., Thuestad, G., Crowley, Q. G., & Hoell, I. A. (2020). Preliminary results from detection of microplastics in liquid samples using flow cytometry. Frontiers in Marine Science, 7, 12. doi:10.3389/fmars.2020.552688 Crossref ● Google Scholar | ||||
| ||||
Khoma, V. V., Gnatyshyna, L. L., Martinyuk, V. V., Mackiv, T. R., Mishchuk, N. Y., & Stoliar, O. B. (2020). Metallothioneins contribution to the response of bivalve mollusk to xenobiotics. Ukrainian Biochemical Journal, 92(5), 87-96. doi:10.15407/ubj92.05.087 Crossref ● Google Scholar | ||||
| ||||
Klasios, N., De Frond, H., Miller, E., Sedlak, M., & Rochman, C. M. (2021). Microplastics and other anthropogenic particles are prevalent in mussels from San Francisco Bay, and show no correlation with PAHs. Environmental Pollution, 271, 116260. doi:10.1016/j.envpol.2020.116260 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lasee, S., Mauricio, J., Thompson, W. A., Karnjanapiboonwong, A., Kasumba, J., Subbiah, S., Morse, A. N., Anderson, T. A. (2017). Microplastics in a freshwater environment receiving treated wastewater effluent. Integrated Environmental Assessment and Management, 13(3), 528-532. doi:10.1002/ieam.1915 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., Li, D., & Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177-184. doi:10.1016/j.envpol.2016.04.012 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7, 44501. doi:10.1038/srep44501 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Martyniuk, V., Khoma, V., Matskiv, T., Baranovsky, V., Orlova-Hudim, K., Gylytė, B., Symchak, R., Matciuk, O., Gnatyshyna, L., Manusadžianas, L., & Stoliar, O. (2022). Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 261, 109425. doi:10.1016/j.cbpc.2022.109425 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Masura, J., Baker, J., Foster, G., Arthur, C., & Herring, C. (2015). Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48. Available from https://repository.library.noaa.gov/view/noaa/10296 Google Scholar | ||||
| ||||
Moore, C. J. (2008). Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental Research, 108(2), 131-139. doi: 10.1016/j.envres.2008.07.025 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Moreschi, A. C., Callil, C. T., Christo, S. W., Ferreira Junior, A. L., Nardes, C., de Faria, É., & Girard, P. (2020). Filtration, assimilation and elimination of microplastics by freshwater bivalves. Case Studies in Chemical and Environmental Engineering, 2, 100053. doi:10.1016/j.cscee.2020.100053 Crossref ● Google Scholar | ||||
| ||||
Nolte, T. M., Hartmann, N. B, Kleijn, J. M, Garnæs, J., van de Meent, D., Jan Hendriks, A., & Baun, A. (2017). The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology, 183, 11-20. doi:10.1016/j.aquatox.2016.12.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pedersen, A. F., Gopalakrishnan, K., Boegehold, A. G., Peraino, N. J., Westrick, J. A., & Kashian, D. R. (2020). Microplastic ingestion by quagga mussels, Dreissena bugensis, and its effects on physiological processes. Environmental Pollution, 260, 113964. doi:10.1016/j.envpol.2020.113964 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Prata, J. C., Reis, V., Matos, J., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). The Science of the Total Environment, 690, 1277-1283. doi:10.1016/j.scitotenv.2019.07.060 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., Teh, F. C., Werorilangi, S., & Teh, S. J. (2015). Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports, 5, 14340. doi:10.1038/srep14340 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Su, L., Cai, H., Kolandhasamy, P., Wu, C., Rochman, C. M., & Shi, H. (2018). Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environmental Pollution, 234, 347-355. doi:10.1016/j.envpol.2017.11.075 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Von Moos, N., Burkhardt-Holm, P., & Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environmental Science & Technology, 46(20), 11327-11335. doi:10.1021/es302332w Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wegner, A., Besseling, E., Foekema, E. M., Kamermans, P., & Koelmans, A. A. (2012). Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environmental Toxicology and Chemistry, 31(11), 2490-2497. doi:10.1002/etc.1984 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wesch, C., Bredimus, K., Paulus, M., & Klein, R. (2016) Towards the suitable monitoring of ingestion of microplastics by marine biota: a review. Environmental Pollution, 218, 1200-1208. doi:10.1016/j.envpol.2016.08.076 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yeung, W. S., Loh, W. W., Lau, H. H., Loh, X. J., & Lim, J. Y. (2021). Catalysts developed from waste plastics: a versatile system for biomass conversion. Materials Today Chemistry, 21, 100524. doi:10.1016/j.mtchem.2021.100524 Crossref ● Google Scholar | ||||
| ||||
Zhang, Z., & Han, X. (2019). Polymer antibacterial agent immobilized polyethylene films as efficient antibacterial cling film. Materials Today Chemistry, 105, 110088. doi:10.1016/j.msec.2019.110088 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 V. V. Martyniuk
This work is licensed under a Creative Commons Attribution 4.0 International License.