ROLE OF REACTIVE OXYGEN AND NITROGEN SPECIES IN FORMATION OF ACUTE AND CHRONIC EXPERIMENTAL ARTHRITIS

I. I. Kril, A. M. Gavrylyuk, A. V. Kotsyuruba, Y. Y. Kit, V. V. Chopyak, R. S. Stoika


DOI: http://dx.doi.org/10.30970/sbi.0803.378

Abstract


Free radical oxidation processes is an important link of rheumatoid arthritis pathogenesis. Reactive oxygen species and reactive nitrogen species are formed during cellular oxidative phosphorylation. They perform an important role in the transmission of cellular signals, destroy of foreign agents, regulation of cell proliferation. The hyperproduction of the reactive oxygen species can lead to a damage of proteins, lipids, nucleic acids and cell matrix components, including the synovial membrane and extra-articular tissues. Objective: to determine the reactive oxygen and nitrogen species roles in rats’s blood serum at experimental carrageenan- and collagen-induced inflammatory arthritis. Method: spectrophotometry with using biochemical analysis. Results: Rate of the reactive oxygen species (NO2, •OH, H2O2) generation in the group of animals with collagen arthritis was higher than in the group of animals with carrageenan inflammation. In the same experimental group the nitrosative stress products and activities (cNOS, iNOS, NO2, NO3, ARG) were higher too. Conclusion: Products of the oxidative and nitrosative stresses contribute actively to development of pathological changes in tissues of animals with collagen arthritis which is an analogue of rheumatoid arthritis in humans, compared to the carrageenan-induced model of the immunoinflammatory process.


Keywords


rheumatoid arthritis, collagen arthritis, carrageenan arthritis, reactive oxygen species, reactive nitrogen species

References


1. Akopova O.V., Korkach Y.P., Kotsyuruba A.V. et al. Reactive nitrogen and oxygen species mtabolism in rat heart mitochondria upon administration of NO donor in vivo. Physiological Journal, 2012; 2: 3-15. (In Ukrainian)
https://doi.org/10.1615/IntJPhysPathophys.v3.i4.40

2. Ayala A., Muñoz M., Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014; 2: 1-31.
https://doi.org/10.1155/2014/360438
PMid:24999379 PMCid:PMC4066722

3. Bendele A.M. Animal models of rheumatoid arthritis. J. Musculoskel Neuron Interact, 2001; 1(4): 377-385.

4. Bondar T. L-arginin/nitric oxide system and immunity. Experimental and Сlinical Medicine, 2009; 3: 4-8. (In Russian)

5. Boyde T.R., Rahmatullah M. Optimization of conditions for the colorimetric determination of citrulline, using diacetуl monoxime. Anal. Biochem, 1980; 107(2): 424-431.
https://doi.org/10.1016/0003-2697(80)90404-2

6. Chin S.Y., Pandey K.N., Shi S.J. et al. Increased activity and expression of Ca2+-dependent NOS in renal cortex of ANG II-infused hypertensive rats. Amer. J. Physiol, 1999; 277(5): 797-804.
https://doi.org/10.1152/ajprenal.1999.277.5.F797
PMid:10564245 PMCid:PMC2574501

7. Conte D., Narindrasorasa K. S., Sarkar B. In vivo and in vitro iron replaced zinc finger generates free radicals and causes DNA damage. Eur. J. Biochem, 1996; 271(9): 5125-5130.
https://doi.org/10.1074/jbc.271.9.5125
PMid:8617792

8. Fehrenbacher J.C., Vasko M.R., Duarte D.B. Models of inflammation: Carrageenan- or complete Freund's Adjuvant (CFA)-induced edema and hypersensitivity in the rat. Curr. Protoc. Pharmacol, 2012; 5 (5.4): doi: 10.1002/0471141755. ph 0504s56.
https://doi.org/10.1002/0471141755

9. Green L.L., Wagner D.A., Glogowski J. et al. Analysis of nitrate, nitrite and [+5N] nitrate in biological fluids. Anal. Biochem, 1982; 126(1): 131-138.
https://doi.org/10.1016/0003-2697(82)90118-X

10. Hitchon C., El-Gabalawy H. Oxydation in rheumatoid arthritis. Arthritis Res. The, 2004; 6: 265-278.
https://doi.org/10.1186/ar1447
PMid:15535839 PMCid:PMC1064874

11. Humphries K.M., Yoo Y., Szweda L.I. Inhibition of NADH-linked mitochondrial respiration by 4-hydroxy-2-nonenal. Biochem. J, 1998; 37(2): 552-557.
https://doi.org/10.1021/bi971958i
PMid:9425076

12. Jsukahara H. Effect of NOS inhibitions on bone metabolism in growing rats. Amer. J. Physiol, 1996; 270(5): 840-845.
https://doi.org/10.1152/ajpendo.1996.270.5.E840
PMid:8967473

13. Leonaviciene L., Bradunaitt R., Vaitkiene D. et al. Collagen-induced arthritis and pro-/antioxidant status in Wistar and Lewis rats. Biologija, 2008; 54(4): 290-300.
https://doi.org/10.2478/v10054-008-0059-8

14. Nagy G., Clark J, Buzas E. et al. Nitric oxide, chronic inflammation and autoimmunity. Immunol. Letters, 2007; 111: 1-5.
https://doi.org/10.1016/j.imlet.2007.04.013
PMid:17568690

15. Salter M., Knowles R.G., Moncada S. Widespread tissue distribution, species and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide syntases. FEBS Lett, 1991; 291(1): 145-149.
https://doi.org/10.1016/0014-5793(91)81123-P

16. Shugaley V.S., Kozina A.S. Urea and arginase activity in rat's organs with cold acclimatization. Fyzyol. Zh. USSR, 1977; 8: 1199-1202. (In Russian)

17. Stamp L.K., Khalilova I., Tarr J.M. et al. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology, 2012; 19: 1-7.
https://doi.org/10.1093/rheumatology/kes193
PMid:22814531

18. Winyard P., Ryan B., Eggleton P. et al. Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease. Biochem. Soc. Trans, 2011; 39: 1226-1232.
https://doi.org/10.1042/BST0391226
PMid:21936794


Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.