EVOLUTIONARY AND ECOLOGICAL ESTIMATION OF FRUIT STRUCTURE IN MONOCOTYLEDONOUS PLANTS OF THE FLORA OF UKRAINE

A. Odintsova, O. Fishchuk, I. Danylyk


DOI: http://dx.doi.org/10.30970/sbi.1603.688

Abstract


Background. Monocot plants in the flora of Ukraine embrace about 1000 species. The members of this group have various fruit types and ways of dissemination. In this review, the results of the evolutionary-morphological analysis of fruits in monocot plants of the flora of Ukraine and their structural adaptations to dispersal are presented.
Gynoecium structure and morphogenetic fruit types in monocots. The features of the inner gynoecium structure and the relation between gynoecium and fruit structure were analyzed, and the main problems of fruit classification were detected. It was revealed that apocarpous fruits are often polymerous or oligomerous, composed of 3–6 one-seeded fruitlets. The species with inferior ovary often develop capsular fruits. One-seeded fruits represent the most reduced variant of the gynoecium structure and fruit wall anatomy, providing few structural traits for analysis.
Ecological and functional features of fruits in monocots. The characteristics of dehiscent and indehiscent fruits, as well as adaptations to various ways of dispersal: myrmeco-, endozoo-, epizoo-, anemo-, hydro- and autochory are presented. Dehiscent fruits (follicle and capsule) reveal ventral, dorsal or double, dorsoventral dehiscence. One-seeded fruits and fruitlets are often adapted to hydrochory or anemochory.
Trends of evolutionary changes of fruits in monocots. The most diverse fruits are found in low-species taxa of early monocots. Within the monocots, we can observe certain evolutionary trends: incomplete carpel fusion, the occurrence of superior one-seeded fruits and inferior many-seeded fruits. Each of these trends may be evoked by adaptations for pollination in gynoecium at the flowering stage.
Conclusions. The present evolutionary morphological and ecological studies of fruits in monocot plants of the flora of Ukraine are impeded by controversial structural types of the gynoecium in some species and a scarcity of data on ways of dispersal of fruits and seeds. The precise carpological and carpoecological investigations of the monocots are desirable for many plants of the flora of Ukraine.


Keywords


gynoecium, carpel, inferior ovary, fruit wall, adaptation, fruit dehiscence

References


Artyushenko, Z. T. (1990). Atlas po opisatel'noj morfologii vysshih rastenij: Semia [Atlas of comparative morphology of higher plants: The Seed]. Leningrad: Nauka. (In Russian)
Google Scholar

Artyushenko, Z. T., & Fedorov, A. A. (1986). Atlas po opisatel'noj morfologii vysshih rastenij: Plod [Atlas of comparative morphology of higher plants: The Fruit]. Leningrad: Nauka. (In Russian)
Google Scholar

Bobrov, A. V., Melykyan, A. P., & Romanov, M. S. (2009). Morfogenez plodov Magnoliophyta [Morphogenesis of fruits of Magnoliophyta]. Moskow: Librokom. (In Russian)
Google Scholar

Bobrov, A. V., & Romanov, M. S. (2019). Morphogenesis of fruits and types of fruit of angiosperms. Botany Letters, 166(3), 366-399. doi:10.1080/23818107.2019.1663448
CrossrefGoogle Scholar

Boedeltje, G., Bakker, J. P., Ten Brinke, A., Van Groenendael, J. M., & Soesbergen, M. (2004). Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology, 92(5), 786-796. doi:10.1111/j.0022-0477.2004.00906.x
CrossrefGoogle Scholar

Chen, S.-C., Pahlevani, A. H., Malíková, L., Riina, R., Thomson, F. J., & Giladi, I. (2019). Trade-off or coordination? Correlations between ballochorous and myrmecochorous phases of diplochory. Functional Ecology, 33(8), 1469-1479. doi:10.1111/1365-2435.13353
CrossrefGoogle Scholar

Costea, M., El Miari, H., Laczkó, L., Fekete, R., Molnár, A. V., Lovas-Kiss, Á., & Green, A. J. (2019). The effect of gut passage by waterbirds on the seed coat and pericarp of diaspores lacking "external flesh": Evidence for widespread adaptation to endozoochory in angiosperms. PLoS One, 14(12), e0226551. doi:10.1371/journal.pone.0226551
CrossrefPubMedPMCGoogle Scholar

Dirks-Mulder, A., Ahmed, I., uit het Broek, M., Krol, L., Menger, N., Snier, J., van Winzum, A., de Wolf, A., van't Wout, M., Zeegers, J. J., Butôt, R., Heijungs, R., van Heuven, B. J., Kruizinga, J., Langelaan, R., Smets, E. F., Star, W., Bemer, M., & Gravendeel, B. (2019). Morphological and molecular characterization of orchid fruit development. Frontiers in Plant Science, 10, 137. doi:10.3389/fpls.2019.00137
CrossrefPubMedPMCGoogle Scholar

Eames, A. J. (1961). Morphology of the angiosperms. New-York, Toronto: McGraw-Hill. doi:10.5962/bhl.title.5986
CrossrefGoogle Scholar

Eckardt, Th. (1937). Untersuchungen über Morphologie, Entwicklungsgeschichte und systematische Bedeutung des pseudomonomeren Gynoeceums. Nova Acta Leopoldina, 5, 3-112.
Google Scholar

Efremov, A. N., Filonenko, A. V., & Sviridenko, B. F. (2015). Anatomy and morphology of reproductive organs of Stratiotes aloides L. (Hydrocharitaceae). Inland Water Biology, 8(4), 334-344. doi:10.1134/S1995082915040057
CrossrefGoogle Scholar

Endress, P. K. (1995). Major evolutionary traits of monocot flowers. In: P. J Rudall, P. J. Cribb, D. F. Cutler, C. J. Humphries (Eds.). Monocotyledons: Systematics and Evolution (pp. 43-79). Kew: Royal Botanic Gardens.
Google Scholar

Fishchuk, O. S., & Odintsova, A. V. (2020). Micromorphology and anatomy of the flowers of Galanthus nivalis and Leucojum vernum (Amaryllidaceae). Regulatory Mechanisms in Biosystems, 28(4), 101-106. doi:10.15421/022071
CrossrefGoogle Scholar

Givnish, T. J., Pires, J. C., Graham, S. W., McPherson, M. A., Prince, L. M., Patterson, T. B., Rai, H. S., Roalson, E. H., Evans, T. M., Hahn, W. J., Millam, K. C., Meerow, A. W., Molvray, M., Kores, P. J., O'Brien, H. E., Hall, J. C., Kress, W. J., & Sytsma, K. J. (2005). Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. Proceedings of the Royal Society B: Biological Sciences, 272(1571), 1481-1490. doi:10.1098/rspb.2005.3067
CrossrefPubMedPMCGoogle Scholar

Goldblatt, P., Manning, J. C., & Rudall, P. (1998). Iridaceae. In: K. Kubitzki (Ed.). Flowering Plants. Monocotyledons (pp. 295-333). Berlin: Springer. doi:10.1007/978-3-662-03533-7_37
CrossrefGoogle Scholar

Igersheim, A., Buzgo, M., & Endress, P. K. (2001). Gynoecium diversity and systematics in basal monocots. Botanical Journal of the Linnean Society, 136(1), 1-65. doi:10.1111/j.1095-8339.2001.tb00555.x
CrossrefGoogle Scholar

Iurmanov A. A., Romanov M., & Bobrov A. V. (2021). Fruit morphology and histology of Zostera asiatica Miki and Phyllospadix iwatensis Makino (Zosteraceae) in connection with сomparative carpologу of higher Alismatales. Botany Letters, 168(4), 570-576. doi:10.1080/23818107.2021.1914157
CrossrefGoogle Scholar

Izmestieva, S. V., & Odintsova, A. V. (2010). Comparative gynoecium morphology in Stratiotes aloides L. and Hydrocharis morsus-ranae L. (Hydrocharitaceae). Studia Biologica, 4(1), 115-122. doi:10.30970/sbi.0401.079 (In Ukrainian)
CrossrefGoogle Scholar

Kaden, N. N. (1958a). Apokarpiya ginetseya i ploda zlakov po dannym sravnitelnoy morfologii [Apocarpy of gynoecium and fruit of grasses according to data of comparative morphology]. Nauchnye Doklady Vysshey Shkoly, Biologicheskie Nauki, 3, 113-123. (In Russian)

Kaden, N. N. (1958b). Apokarpiya ginetseya i ploda zlakov po dannym teratologii [Apocarpy of gynoecium and fruit of grasses according to data of teratology]. Nauchnye Doklady Vysshey Shkoly, Biologicheskie Nauki, 4, 111-117. (In Russian)

Kaden, N. N. (1959). Apokarpiya ginetseya i ploda zlakov po dannym vaskulyarnoy anatomii i ontogenii [Apocarpy of gynoecium and fruit of grasses according to data of vascular anatomy and ontogeny]. Nauchnye Doklady Vysshey Shkoly, Biologicheskie Nauki, 3, 147-159. (In Russian)
Google Scholar

Kaden, N. N. (1962). Tipy prodolnogo vskryvaniya plodov [The Types of Longitudinal Dehiscense of Fruits]. Botanicheskii Zhurnal, 47, 495-505. (In Russian)
Google Scholar

Kaden, N. N. (1965). Tipy plodov rasteniy sredney polosy evropeyskoy chasti SSSR [The fruit types of plants inhabiting the middle zone of the European part of the USSR]. Botanicheskii Zhurnal, 50(6), 775-787. (In Russian)
Google Scholar

Kaden, N. N. (1971). Semeystvo Juncaginaceae Lindl. [Family Juncaginaceae Lindl. - Arrowgrass family]. In: N. N. Kaden (Ed.). Morphology of fruits and seeds of some weed plants of USSR. Uchenye zapiski Moskovskogo oblastnogo ped instituta. Botanika, 292(5), Moskow, 30-32, 73. (In Russian)

Kirkbride, J. H., Gunn C. R., & Dallwitz M. J. (2006). Family guide for fruits and seeds (accessed August 23, 2022). Retrieved from https://nt.ars-grin.gov/seedsfruits/keys/frsdfam/index.cfm
Google Scholar

Kubitzki, K., Rudall, P. J., & Chase, M. C. (1998). Systematics and Evolution. In: K. Kubitzki (Ed.). Flowering Plants. Monocotyledons (pp. 23-33). Berlin: Springer. doi:10.1007/978-3-662-03533-7_3
CrossrefGoogle Scholar

Leinfellner, W. (1950). Der Bauplan des synkarpen Gynözeums. Österreichische Botanische Zeitschrift, 97(3-5), 403-436. doi:10.1007/BF01763317
CrossrefGoogle Scholar

Leins, P., & Erbar, C. (2010). Flower and fruit: Morphology, ontogeny, phylogeny, function and ecology. Stuttgart: Schweizerbart.
Google Scholar

Levina, R. E. (1957). Sposoby rasprostraneniya plodov i semyan [Methods of dispersal of fruits and seeds]. Mosсow: Nauka. (In Russian)
Google Scholar

Levina, R. E. (1987). Morfologiya i ekologiya plodov [Morphology and ecology of fruit]. Leningrad: Nauka. (In Russian)
Google Scholar

Meerow, A. W., & Snijman, D. A. (1998). Amaryllidaceae. In: K. Kubitzki (Ed.). Flowering Plants. Monocotyledons (pp. 83-110). Berlin: Springer. doi:10.1007/978-3-662-03533-7_11
CrossrefGoogle Scholar

Mosyakin, S. L. (2013). Families and orders of angiosperms of the flora of Ukraine: a pragmatic classification and placement in the phylogenetic system. Ukrainian Botanical Journal, 70(3), 289-307. doi:10.15407/ukrbotj70.03.289 (In Ukrainian)
CrossrefGoogle Scholar

Mosyakin, S. L. & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine. A nomenclatural checklist. Kiev: M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine.
Google Scholar

Odintsova, A. V. (2022). Morphogenesis of fruit as a subject matter for the carpological studies. Ukrainian Botanical Journal, 79(3), 169-183. doi:10.15407/ukrbotj79.03.169 (In Ukrainian)
CrossrefGoogle Scholar

Odintsova, A., & Fishchuk, O. (2017). The flower morphology in three Convallariaceae species with various attractive traits. Acta Agrobotanica, 70(1), 1705-1719. doi:10.5586/aa.1705
CrossrefGoogle Scholar

Odintsova, A. V., Fishchuk, O. S., Scrypec, K. I., & Danylyk, I. M. (2021). Systematic treatment of morphological fruit types in plants of the class Liliopsida of the flora of Ukraine. Regulatory Mechanisms in Biosystems, 12(3), 375-382. doi:10.15421/022151
CrossrefGoogle Scholar

POWO (2022). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://www.plantsoftheworldonline.org (https://powo.science.kew.org). Accessed 11 September 2022.

Rasmussen, F., Frederikson, S., Johansen, B., Jørgenson, L., & Peterson, P. (2006). Fleshy fruits in liliflorous monocots. Aliso: A Journal of Systematic and Floristic Botany, 22(1), 135-147. doi:10.5642/aliso.20062201.11
CrossrefGoogle Scholar

Remizova, M., & Sokoloff, D. (2003). Inflorescence and floral morphology in Tofieldia (Tofieldiaceae) compared with Araceae, Acoraceae and Alismatales s.str. Botanische Jahrbücher Für Systematik, Pflanzengeschichte Und Pflanzengeographie, 124(3), 255-271. doi:10.1127/0006-8152/2003/0124-0255
CrossrefGoogle Scholar

Remizowa, M., Sokoloff, D., & Rudall, P. J. (2006). Evolution of the monocot gynoecium: evidence from comparative morphology and development in Tofieldia, Japonolirion, Petrosavia and Narthecium. Plant Systematics and Evolution, 258(3-4), 183-209. doi:10.1007/s00606-005-0397-3
CrossrefGoogle Scholar

Remizowa, M. V., Sokoloff, D. D., & Rudall, P. J. (2010). Evolutionary history of the monocot flower. Annals of the Missouri Botanical Garden, 97(4), 617-645. doi:10.3417/2009142
CrossrefGoogle Scholar

Roth, I. (1977). Fruits of Angiosperms. In: W. Zimmermann, S. Carlquist, P. Ozenda, & H. D. Wulff (Hrsg.). Handbuch der Pflanzenanatomie. Spec. Teil. Band 10. Teil 1. Berlin, Stuttgart: Gebrüder Borntraeger.
Google Scholar

Rudall, P. J. (2002). Homologies of inferior ovaries and septal nectaries in Monocotyledons. International Journal of Plant Sciences, 163(2), 261-276. doi:10.1086/338323
CrossrefGoogle Scholar

Rudall, P. J., Stuppy, W., Cunniff, J., Kellogg, E. A., & Briggs, B. G. (2005). Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. American Journal of Botany, 92(9), 1432-1443. doi:10.3732/ajb.92.9.1432
CrossrefPubMedGoogle Scholar

Shamrov, I. I. (2010). Osobennosti formirovaniya sinkarpnogo ginetseya u nekotorykh odnodolnykh rasteniy [The peculiarities of syncarpous gynoecium formation in some monocotyledonous plants]. Botanicheskii Zhurnal, 95(8), 1041-1070. (In Russian)
Google Scholar

Shamrov, I. I. (2014). Stroenie i formirovanie ginetseya u Hemerocallis citrina (Hemerocallidaceae) [Structure and formation of gynoecium in Hemerocallis citrina (Hemerocallidaceae)]. Botanicheskii Zhurnal, 99(2), 159-177. doi: 10.1134/S1234567814020025 (In Russian)
CrossrefGoogle Scholar

Shivaprakash, K. N., & Bawa, K. S. (2022). The evolution of placentation in flowering plants: a possible role for kin selection. Frontiers in Ecology and Evolution, 10. doi:10.3389/fevo.2022.784077
CrossrefGoogle Scholar

Skrypec, K., & Odintsova, A. (2020). Morphogenesis of fruits in Gladiolus imbricatus and Iris sibirica (Iridaceae). Ukrainian Botanical Journal, 77(3), 210-224. doi:10.15407/ukrbotj77.03.210 (In Ukrainian)
CrossrefGoogle Scholar

Smets, E. F., Ronse Decraene L.-P., Caris, P., & Rudall, P. J. (2000). Floral nectaries in monocotyledons: distribution and evolution. In: K. L. Wilson & D. A. Morrison (Eds.). Monocots: Systematics and Evolution (рр. 230-240). Melbourne: CSIRO.
Google Scholar

Sokoloff, D. D. (2016). Correlations between gynoecium morphology and ovary position in angiosperm flowers: roles of developmental and terminological constraints. Biology Bulletin Reviews, 6(1), 84-95. doi:10.1134/s2079086416010060
CrossrefGoogle Scholar

Sokoloff, D. D., Nuraliev, M. S., Oskolski, A. A., & Remizowa, M. V. (2017). Gynoecium evolution in angiosperms: monomery, pseudomonomery, and mixomery. Moscow University Biological Sciences Bulletin, 72(3), 97-108. doi:10.3103/s0096392517030105
CrossrefGoogle Scholar

Sokoloff, D. D., Remizowa, M. V., Timonin, A. C., Oskolski, A. A., & Nuraliev, M. S. (2018). Types of organ fusion in angiosperm flowers (with examples from Chloranthaceae, Araliaceae and monocots). Biologia Serbica, 40(1), 16-46.
Google Scholar

Sokoloff, D. D., Fomichev, C. I., Rudall, P. J., Macfarlane, T. D., & Remizowa, M. V. (2022). Evolutionary history of the grass gynoecium. Journal of Experimental Botany, 73(14), 4637-4661. doi:10.1093/jxb/erac182
CrossrefPubMedGoogle Scholar

Spjut, R. W. (1994). A systematic treatment of fruit types. New York: Botanical Garden. (Accessed: 22 August 2022). Retrieved from http://www.worldbotanical.com/fruit_types.htm#Classification
Google Scholar

Takhtajan, A. L. (1966). Sistema i filogenija tsvetkovyh rastenij [Systems and phylogeny of Flowering Plants]. Moscow-Leningrad: Nauka. (In Russian)
Google Scholar

Takhtajan, A. (2009). Flowering Plants. New York: Springer. doi:10.1007/978-1-4020-9609-9
CrossrefGoogle Scholar

Teryokhin, E. S. (1977). Parazitnye tsvetkovye rastenija: evolutsia ontogeneza i obraza zhisni [Parasitic flowering plants: evolution of ontogenesis and way of life]. Leningrad: Nauka. (In Russian)
Google Scholar

Teryokhin, E. S. (1996). Semya i semennoe razmnozhenie [Seed and seed reproduction]. St. Petersburg: Mir i semia. (In Russian)
Google Scholar

Thadeo, M., Hampilos, K. E., & Stevenson, D. W. (2015). Anatomy of fleshy fruits in the monocots. American Journal of Botany, 102(11), 1757-1779. doi:10.3732/ajb.1500204
CrossrefPubMedGoogle Scholar

Thorsen, M. J., Dickinson, K. J. M., & Seddon, P. J. (2009). Seed dispersal systems in the New Zealand flora. Perspectives in Plant Ecology, Evolution and Systematics, 11(4), 285-309. doi:10.1016/j.ppees.2009.06.001
CrossrefGoogle Scholar

Van der Pijl, L. (1982). Principles of dispersal in higher plants. Berlin: Springer-Verlag. dol:10.1007/978-3-642-87925-8
CrossrefGoogle Scholar

Voytenko, V. F. (1989). Geterokarpiya (geterodiasporiya) u pokrytosemennykh rasteniy: analiz ponyatiya, klassifikatsiya, terminologiya [Heterocarpy (heterodiaspory) in angiosperms: concept analysis, classification and terminology]. Botanicheskii Zhurnal, 74(3), 281-297. (In Russian)
Google Scholar

Watson, L., & Dallwitz, M. J. (1992 onwards). The families of Flowering Plants: descriptions, illustrations, identification, and information retrieval (accessed: 22 August 2022). Retrieved from https://www.delta-intkey.com/angio/index.htm
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 A. Odintsova, O. Fishchuk, I. Danylyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.