MODELING OF MOLECULAR PROCESSES UNDERLYING PARKINSON’S DISEASE IN CELLS OF METHYLOTROPHIC YEAST HANSENULA POLYMORPHA

I. O. Denega, N. I. Klymyshyn, N. O. Sybirna, O. V. Stasyk, O. G. Stasyk


DOI: http://dx.doi.org/10.30970/sbi.0802.343

Abstract


Abnormal oligomerisation and aggregation of the protein called alpha-synuclein (α-syn) are the key events in the pathogenesis of Parkinson’s disease (PD). Recent discoveries revealed cellular pathways that potentially relate neurodegenerative disease (ND) to abnormal functioning of mitochondria or anomalous glucose metabolism. In this study we describe for the first time strains of the thermotolerant methylotrophic yeast Hansenula polymorpha that produce human GFP-tagged α-syn as a new model of molecular processes leading to PD. We observed that NCYC495-SNCA wild-type strain did not form visible α-syn amyloid-like aggregates but exhibited plasma membrane perforations and cytoplasm leakage. gcr1-2-SNCA mutant strain deficient in catabolite repression and glucose transport exhibited enhanced aggregation of fluorescently tagged α-syn. However, the observed differences did not result from the impaired glucose metabolism as were observed in both α-syn-producing strains grown on glycerol. Production of α-syn was detrimental for both strains and decreased their growth rate on alternative carbon sources. Our data suggests that H. polymorpha may serve as an informative new yeast model for deciphering molecular mechanisms of PD that regulate amyloid formation and degradation under the influence of various extra- and intracellular factors.


Keywords


methylotrophic yeast, α-synuclein, amyloids, neurodegeneration

Full Text:

PDF

References


1. Aviles-Olmos I., Limousin P., Lees A., Foltynie T. Parkinson's disease, insulin resistance and novel agents of neuroprotection. Brain, 2012; 136(Pt 2): 374-84.
https://doi.org/10.1093/brain/aws009
PMid:22344583

2. Baltic S., Perovic M., Mladenovic A. et al. α-syn Is Expressed in Different Tissues During Human Fetal Development. Journal of Molecular Neuroscience, 2004; 22(3): 199-203.
https://doi.org/10.1385/JMN:22:3:199

3. Beyer K. Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol, 2006; 112(3): 237-51.
https://doi.org/10.1007/s00401-006-0104-6
PMid:16845533

4. Bocer T., Zarubica A., Roussel A. The mammalian ABC transporter ABCA1 induces lipid-dependent drug sensitivity in yeast. Biochimica et Biophysica Acta (BBA), 2012; 1821(3): 373-380.
https://doi.org/10.1016/j.bbalip.2011.07.005
PMid:21787882

5. Bodner R.A., Outeiro T.F., Altmann S. et al. Pharmacological promotion of inclusion formation: A therapeutic approach for Huntington's and Parkinson's diseases. PNAS, 2004; 103(11): 4246-4251.
https://doi.org/10.1073/pnas.0511256103
PMid:16537516 PMCid:PMC1449678

6. Chen L., Periquet M., Wang X. et al. Tyrosine and serine phosphorylation of α-syn have opposing effects on neurotoxicity and soluble oligomer formation. J. Clin. Invest, 2009; 119: 3257-3265.
https://doi.org/10.1172/JCI39088
PMCid:PMC2769182

7. Emadi S., Barkhordarian H., Wang M. S. et al. Isolation of a human single chain antibody fragment against oligomeric α-syn that inhibits aggregation and prevents α-syn induced toxicity. J. Mol. Biol, 2007; 368(4): 1132-1144.
https://doi.org/10.1016/j.jmb.2007.02.089
PMid:17391701 PMCid:PMC2235820

8. Faber K.N., Haima P., Harder W. et al. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr. Genet,1994; 25: 305-310.
https://doi.org/10.1007/BF00351482
PMid:8082173

9. Franssens V., Bynens T., Van den Brande J. et al. The benefits of humanized yeast models to study Parkinson's disease. Oxidative Medicine and Cellular Longevity (Hindawi Publishing Corporation), 2013; 2013: Article ID 760629, 9 pages.
https://doi.org/10.1155/2013/760629
PMid:23936613 PMCid:PMC3713309

10. Gellissen G. Heterologous protein production in methylotrophic yeasts. Appl. Microbiol, 2000; Biotechnol. 54: 741-750.
https://doi.org/10.1007/s002530000464
PMid:11152064

11. Hashimoto M., Rockenstein E., Crews L., Masliah E. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuro Molecular Medicine, 2003; 4: 21-35.
https://doi.org/10.1385/NMM:4:1-2:21

12. Kayed R., Sokolov Y., Edmonds B. et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases, J. Biol. Chem, 2004; 279: 46363-46366.
https://doi.org/10.1074/jbc.C400260200
PMid:15385542

13. Krasovska O.S., Stasyk O.G., Nahorny V.O. et al. Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression. Biotechnol. Bioeng, 2007; 97: 858-870.
https://doi.org/10.1002/bit.21284
PMid:17163508

14. Lashuel H.A., Hartley D., Petre B.M. et al. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature, 2002; 418(6895): 291.
https://doi.org/10.1038/418291a
PMid:12124613

15. Lücking C.B., Brice A. Alpha-synuclein and Parkinson's disease. Cell. Mol. Life Sci, 2000; 57: 1894-1908.
https://doi.org/10.1007/PL00000671
PMid:11215516

16. Monastryska I., Sjollema K., Van-Der-Klei I. J. et al. Microautophagy and macropexophagy may occur simultaneously in Hansenula polymorpha. FEBS Letters, 2004; 568(1-3): 135-138.
https://doi.org/10.1016/j.febslet.2004.05.018
PMid:15196934

17. Norris E.H., Giasson B. I., Lee V.M.-Y. Synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol, 2004; 60: 17-54.
https://doi.org/10.1016/S0070-2153(04)60002-0

18. Ocampo A., Barrientos A. Developing yeast models of human neurodegenerative disorders. Methods Mol Biol, 2011; 793: 113-27.
https://doi.org/10.1007/978-1-61779-328-8_8
PMid:21913097

19. Pacheco C., Aguayo L.G., Opazo C. An extracellular mechanism that can explain the neurotoxic effects of α-syn aggregates in the brain. Front. Physiol, 2012; 3: 297.
https://doi.org/10.3389/fphys.2012.00297
PMid:22934048 PMCid:PMC3429068

20. Pieri L., Madiona K., Bousset L., Melki, R. Fibrillar alpha-synuclein and huntingtin exon 1 assemblies are toxic to the cells. Biophys. J, 2012; 102: 2894-2905.
https://doi.org/10.1016/j.bpj.2012.04.050
PMid:22735540 PMCid:PMC3379023

21. Ross C.A., Poirier M.A. Protein aggregation and neurodegenerative disease. Nat. Med, 2004; 10: S10-S17.
https://doi.org/10.1038/nm1066
PMid:15272267

22. Sambrook J., Russel D. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory, 2001. 3 vol.: 510 p.

23. Sandyk R. The relationship between diabetes mellitus and Parkinson's disease. Intern. J. Neuroscience, 1993; 69: 125-130.
https://doi.org/10.3109/00207459309003322
PMid:8082998

24. Santangelo G. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev, 2006; 70(1): 253-258.
https://doi.org/10.1128/MMBR.70.1.253-282.2006
PMid:16524925 PMCid:PMC1393250

25. Stasyk O.V., Stasyk O.G., Komduur J. et al. A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorpha. J. Biol. Chem, 2004; 279(9): 8116-25.
https://doi.org/10.1074/jbc.M310960200
PMid:14660581

26. Sun Y., Chang Y.-H., Chen H.-F. et al. Risk of Parkinson Disease Onset in Patients With Diabetes. Diabetes Care, 2012; 35(5): 1047-1049.
https://doi.org/10.2337/dc11-1511
PMid:22432112 PMCid:PMC3329814

27. Tenreiro S., Outeiro T.F. Simple is good: yeast models of neurodegeneration. FEMS Yeast Res, 2010; 10: 970-979.
https://doi.org/10.1111/j.1567-1364.2010.00649.x
PMid:20579105

28. Uéda K., Saitoh T., Mori H. Tissue-dependent alternative splicing of mRNA for NACP, the precursor of non-A beta component of Alzheimer's disease amyloid. Biochem. Biophys. Res. Commun, 1994; 205(2): 1366-72.
https://doi.org/10.1006/bbrc.1994.2816
PMid:7802671

29. Vekrellis K., Xilouri M., Emmanouilidou E. et al. Pathological roles of α-syn in neurological disorders. Lancet Neurol, 2011; 10(11): 1015-25
https://doi.org/10.1016/S1474-4422(11)70213-7

30. Volles M.J., Lee S.-J., Rochet J.-C. et al. Vesicle permeabilization by protofibrillar α-syn: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry, 2001; 40: 7812-7819.
https://doi.org/10.1021/bi0102398
PMid:11425308

31. Waxman E. A., Giasson B. I. Molecular mechanisms of α-syn neurodegeneration. Biochimica et Biophysica Acta (BBA), 2009; 1792: 616-624.
https://doi.org/10.1016/j.bbadis.2008.09.013
PMid:18955133 PMCid:PMC2756732

32. Xu Q., Park Y., Huang X. et al. Diabetes and risk of Parkinson's disease. Diabetes Care, 2011; 34: 910-815.
https://doi.org/10.2337/dc10-1922
PMid:21378214 PMCid:PMC3064050

33. Zakharov S.D., Hulleman J.D., Dutseva E A. et al. Helical alpha-synuclein forms highly conductive ion channels. Biochemistry, 2007; 46: 14369-14379.
https://doi.org/10.1021/bi701275p
PMid:18031063


Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.