PARTICIPATION OF KATP-CHANNELS OF PLASMA AND MITOCHONDRIAL MEMBRANES IN THE REGULATION OF MECHANOKINETICS OF RAT MYOMETRIUM SPONTANEOUS CONTRACTIONS

O. V. Tsymbalyuk, O. B. Vadzyuk, I. S. Voiteshenko, V. D. Ivanova


DOI: http://dx.doi.org/10.30970/sbi.1603.687

Abstract


Background. ATP-sensitive K+ channels of the plasma membrane in the smooth muscles of the uterus are one of the most significant ion channels that regulate the excitability of this tissue both in the non-pregnant state and during pregnancy. MitoKATР-channels ensure regulation of the bioenergetic state of mitochondria (the intensity of mitochondrial respiration and the potential of the inner mitochondrial membrane). Thus far, there is no information on the participation of both types of these channels in the regulation of the mechanokinetics of spontaneous contractions, therefore the aim of this work was to perform a complete mechanokinetic analysis of spontaneous contractions of rat myometrium under conditions of blocking and activation of ATP-sensitive K+-channels of the plasma membrane and blocking of mitoKATP-channels.
Materials and Methods. Experiments were performed on female Wistar rats. The spontaneous activity of smooth muscle stripes of longitudinal smooth muscles of uterine horns was registered by the tenzometric method in the isometric mode. The experiments used the activator of ATP-sensitive K+-channels of the plasma membrane diazoxide (50, 100, 150 and 200 μM) and the blocker of these channels glibenclamide (1, 2, 4, 6, 8 and 10 μM), as well as the blocker of ATP-sensitive mitochondrial K+-channels 5-hydroxydecanoate (5-HD, 50 µM). The study of mechanokinetics of the contraction-relaxation process of muscle preparations was carried out according to the method (Kosterin et al., 2021) with the calculation of the mechanokinetic parameters of the contraction-relaxation cycle: force (Fmax, FC, and FR), time (τ0, τC, and τR), impulse (Іmax, ІC, and ІR) and velocity parameters (VC and VR).
Results. It was found that both blocking and activation of plasma membrane KATP-channels cause suppression of the amplitude, probably according to different cellular mechanisms of regulation of ion conductivity. Under the influence of glibenclamide, a significant decrease in the frequency and mechanokinetic parameters of spontaneous contractions of the myometrium was observed, which confirms the contribution of plasma membrane KATP-channels to maintaining the excitability of the myometrium of non-pregnant rats. Activation of plasma membrane KATP-channels by diazoxide caused a change in individual mechanokinetic parameters of spontaneous contractions of the myometrium. Under the action of the mitoKATP-channel blocker 5-HD, suppression of the amplitude and modulation of the mechanokinetic parameters of the contraction phase was observed without changes in the kinetics of the relaxation phase of spontaneous contractions.
Conclusions. Thus, modulation of the KATP-channels of the plasma membrane and mitochondria is accompanied by the suppression of spontaneous contractions of the myometrium. Both types of KATP-channels are important regulators of myometrial excitability, however, unlike plasma membrane KATP-channels, mitoKATP-channels probably do not modulate the processes of extrusion of Ca2+ from the cytosol.


Keywords


myometrium, KATP-channels of the plasma membrane and mitochondria, spontaneous contractions, mechanokinetic analysis

Full Text:

PDF

References


Aaronson, P. I., Sarwar, U., Gin, S., Rockenbauch, U., Connolly, M., Tillet, A., Watson, S., Liu, B., & Tribe, R. M. (2006). A role for voltage-gated, but not Ca2+-activated, K+ channels in regulating spontaneous contractile activity in myometrium from virgin and pregnant rats. British Journal of Pharmacology, 147(7), 815-824. doi:10.1038/sj.bjp.0706644
CrossrefPubMedPMCGoogle Scholar

Bränström, R., Berglund, E., Fröbom, R., Leibiger, I. B., Leibiger, B., Aspinwall, C. A., Larsson, O., & Berggren, P. O. (2022). Inward and outward currents of native and cloned KATP channels (Kir6.2/SUR1) share single-channel kinetic properties. Biochemistry and biophysics reports, 30, 101260. doi:10.1016/j.bbrep.2022.101260
CrossrefPubMedPMCGoogle Scholar

Cheuk, J. M., Hollingsworth, M., Hughes, S. J., Piper, I. T., & Maresh, M. J. (1993). Inhibition of contractions of the isolated human myometrium by potassium channel openers. American Journal of Obstetrics and Gynecology, 168(3 Pt 1), 953-960. doi:10.1016/s0002-9378(12)90852-2
CrossrefPubMedGoogle Scholar

D'Ocón, M. P., Anselmi, E., & Villar, A. (1986). Intervención del Ca intracelular en la acción relajante ejercida por las sulfonilureas sobre la musculatura lisa uterina [Role of intracellular Ca in the relaxant action exerted by sulfonylureas on uterine smooth muscle]. Archivos de Farmacologia y Toxicologia, 12(2-3), 119-124.
PubMedGoogle Scholar

Hu, H., Ding, Y., Wang, Y., Geng, S., Liu, J., He, J., Lu, Y., Li, X., Yuan, M., Zhu, S., & Zhao, S. (2017). MitoKATP channels promote the proliferation of hypoxic human pulmonary artery smooth muscle cells via the ROS/HIF/miR-210/ISCU signaling pathway. Experimental and Therapeutic Medicine, 14(6), 6105-6112. doi:10.3892/etm.2017.5322
CrossrefPubMedPMCGoogle Scholar

Khan, R. N., Matharoo-Ball, B., Arulkumaran, S., & Ashford, M. L. (2001). Potassium channels in the human myometrium. Experimental Physiology, 86(2), 255-264. doi:10.1113/eph8602181
CrossrefPubMedGoogle Scholar

Kosterin, S., Tsymbalyuk, O., & Holden, O. (2021). Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Series on Biomechanics, 35(1), 14-30.
Google Scholar

Lee, S. E., Kim, D. H., Son, S. M., Choi, S. Y., You, R. Y., Kim, C. H., Choi, W., Kim, H. S., Lim, Y. J., Han, J. Y., Kim, H. W., Yang, I. J., Xu, W. X., Lee, S. J., Kim, Y. C., & Yun, H. Y. (2020). Physiological function and molecular composition of ATP-sensitive K+ channels in human gastric smooth muscle. Journal of Smooth Muscle Research, 56(0), 29-45. doi:10.1540/jsmr.56.29
CrossrefPubMedPMCGoogle Scholar

Li, X., Rapedius, M., Baukrowitz, T., Liu, G. X., Srivastava, D. K., Daut, J., & Hanley, P. J. (2010). 5-Hydroxydecanoate and coenzyme A are inhibitors of native sarcolemmal KATP channels in inside-out patches. Biochimica et Biophysica Acta, 1800(3), 385-391. doi:10.1016/j.bbagen.2009.11.012
CrossrefPubMedGoogle Scholar

Löffler-Walz, C., & Quast, U. (1998). Binding of KATP channel modulators in rat cardiac membranes. British Journal of Pharmacology, 123(7), 1395-1402. doi:10.1038/sj.bjp.0701756
CrossrefPubMedPMCGoogle Scholar

Lorca, R. A., Prabagaran, M., & England, S. K. (2014). Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Frontiers in Physiology, 5, 289. doi:10.3389/fphys.2014.00289
CrossrefPubMedPMCGoogle Scholar

Lovasz, N., Koncz, A., Domokos, D., Gaspar, R., & Falkay, G. (2015). ATP-sensitive potassium channels modulate in vitro tocolytic effects of β2-adrenergic receptor agonists on uterine muscle rings in rats in early but not in late pregnancy. Croatian Medical Journal, 56(2), 114-118. doi:10.3325/cmj.2015.56.114
CrossrefPubMedPMCGoogle Scholar

Morrison, J. J., Ashford, M. L., Khan, R. N., & Smith, S. K. (1993). The effects of potassium channel openers on isolated pregnant human myometrium before and after the onset of labor: potential for tocolysis. American Journal of Obstetrics and Gynecology, 169(5), 1277-1285. doi:10.1016/0002-9378(93)90294-s
CrossrefPubMedGoogle Scholar

Na, J. S., Hong, C., Kim, M. W., Park, C. G., Kang, H. G., Wu, M. J., Jiao, H. Y., Choi, S., & Jun, J. Y. (2017). ATP-sensitive K+ channels maintain resting membrane potential in interstitial cells of Cajal from the mouse colon. European Journal of Pharmacology, 809, 98-104. doi:10.1016/j.ejphar.2017.05.029
CrossrefPubMedGoogle Scholar

Paggio, A., Checchetto, V., Campo, A., Menabò, R., Di Marco, G., Di Lisa, F., Szabo, I., Rizzuto, R., & De Stefani, D. (2019). Identification of an ATP-sensitive potassium channel in mitochondria. Nature, 572(7771), 609-613. doi:10.1038/s41586-019-1498-3
CrossrefPubMedPMCGoogle Scholar

Piper, I., Minshall, E., Downing, S. J., Hollingsworth, M., & Sadraei, H. (1990). Effects of several potassium channel openers and glibenclamide on the uterus of the rat. British Journal of Pharmacology, 101(4), 901-907. doi:10.1111/j.1476-5381.1990.tb14178.x
CrossrefPubMedPMCGoogle Scholar

Plujà, L., Yokoshiki, H., & Sperelakis, N. (1998). Evidence for presence of ATP-sensitive K+ channels in rat colonic smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 76(12), 1166-1170. doi:10.1139/cjpp-76-12-1166
CrossrefPubMedGoogle Scholar

Quayle, J. M., Nelson, M. T., & Standen, N. B. (1997). ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiological Reviews, 77(4), 1165-1232. doi:10.1152/physrev.1997.77.4.1165
CrossrefPubMedGoogle Scholar

Sawada, K., Morishige, K., Hashimoto, K., Tasaka, K., Kurachi, H., Murata, Y., & Kurachi, Y. (2005). Gestational change of K+ channel opener effect is correlated with the expression of uterine KATP channel subunits. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 122(1), 49-56. doi:10.1016/j.ejogrb.2004.11.026
CrossrefPubMedGoogle Scholar

Sikimic, J., McMillen, T. S., Bleile, C., Dastvan, F., Quast, U., Krippeit-Drews, P., Drews, G., & Bryan, J. (2019). ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate KATP channels. The Journal of Biological Chemistry, 294(10), 3707-3719. doi:10.1074/jbc.RA118.005236
CrossrefPubMedPMCGoogle Scholar

Tatalović, N., Vidonja Uzelac, T., Oreščanin Dušić, Z., Nikolić-Kokić, A., Bresjanac, M., & Blagojević, D. (2021). Ibogaine-mediated ROS/antioxidant elevation in isolated rat uterus is β-adrenergic receptors and KATP channels mediated. Antioxidants (Basel, Switzerland), 10(11), 1792. doi:10.3390/antiox10111792
CrossrefPubMedPMCGoogle Scholar

Teramoto, N. (2006). Physiological roles of ATP-sensitive K+ channels in smooth muscle. The Journal of Physiology, 572(Pt 3), 617-624. doi:10.1113/jphysiol.2006.105973
CrossrefPubMedPMCGoogle Scholar

Tinker, A., Aziz, Q., Li, Y., & Specterman, M. (2018). ATP-sensitive potassium channels and their physiological and pathophysiological roles. Comprehensive Physiology, 8(4), 1463-1511. doi:10.1002/cphy.c170048
CrossrefPubMedGoogle Scholar

Tsymbalyuk, O. V. (2018). Kinetics of relaxation of rat myometrium in conditions of inhibition of plasma membrane calcium pump and systems of active Са2+ transport of intracellular Са2+-depot. Studia Biologica, 12(2); 3-12. doi:10.30970/sbi.1202.565
CrossrefGoogle Scholar

Tsymbalyuk, O. V., Naumenko, A. M., & Davidovska, T. L. (2019). Influence of nano-ТiО2 on the functioning of gastric smooth muscles: an in vitro and in silico studies. Studia Biologica, 13(1), 3-26. doi:10.30970/sbi.1301.592
CrossrefGoogle Scholar

Tsymbalyuk, O. V., & Vadzyuk, O. B. (2020). Involvement of KATP-channels of plasma and mitochondrial membranes in maintaining the contractive function of myometrium of non-pregnant rat uterus. Studia Biologica, 14(2); 3-16. doi:10.30970/sbi.1402.622
CrossrefGoogle Scholar

Vadzyuk, O. B., & Kosterin, S. O. (2018). Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel. Saudi Journal of Biological Sciences, 25(3), 551-557. doi:10.1016/j.sjbs.2016.01.045
CrossrefPubMedPMCGoogle Scholar

Villar, A., D'Ocon, M. P., & Anselmi, E. (1986). Relaxant effects of sulfonylureas on induced contractions of rat uterine smooth muscle: role of intracellular calcium. Archives Internationales de Pharmacodynamie et de Therapie, 279(2), 248-257.
Google Scholar

Villar, A., Ivora, M. D., D'Ocon, M. P., & Anselmi, E. (1986). Effects of sulphonylureas on spontaneous motility and induced contractions in rat isolated uterus. The Journal of Pharmacy and Pharmacology, 38(10), 778-780. doi:10.1111/j.2042-7158.1986.tb04493.x
CrossrefPubMedGoogle Scholar

Wray, S., & Arrowsmith, S. (2021). Uterine excitability and ion channels and their changes with gestation and hormonal environment. Annual Review of Physiology, 83, 331-357. doi:10.1146/annurev-physiol-032420-035509
CrossrefPubMedGoogle Scholar

Yoshitake, K., Hirano, K., & Kanaide, H. (1991). Effects of glibenclamide on cytosolic calcium concentrations and on contraction of the rabbit aorta. British Journal of Pharmacology, 102(1), 113-118. doi:10.1111/j.1476-5381.1991.tb12141.x
CrossrefPubMedPMCGoogle Scholar

Zhao, C., & MacKinnon, R. (2021). Molecular structure of an open human KATP channel. Proceedings of the National Academy of Sciences of the United States of America, 118(48), e2112267118. doi:10.1073/pnas.2112267118
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 O. V. Tsymbalyuk, O. B. Vadzyuk, I. S. Voiteshenko, V. D. Ivanova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.