PHOTOBIOMODULATION THERAPY PROTECTS RED BLOOD CELLS AGAINST NITRATIVE STRESS DURING STREPTOZOTOCIN-INDUCED DIABETES
DOI: http://dx.doi.org/10.30970/sbi.1603.685
Abstract
Background. According to the International Diabetes Federation Diabetes Atlas, 10th edition, diabetes is responsible for 6.7 million deaths in 2021. Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia secondary to either resistance to insulin, insufficient insulin secretion, or both. Oxidative and nitrative stress is a vital part of the complex mechanism by which diabetes and its complications develop. It is known that Photobiomodulation therapy accelerates diabetic wound healing, treats relegated inflammation, and increases oxygen availability for cells. Although some basic molecular mechanisms caused by photobiomodulation therapy in different cell types are already known, they have not been studied in erythrocytes and are different due to the absence of central organelles such as nucleus and mitochondria. The aim of the study was to investigate the effect of photobiomodulation therapy on the development of nitrative stress in blood plasma and erythrocytes of rats from different experimental groups.
Materials and Methods. The study was performed on white outbred male rats weighing 130–180 g. The diabetes mellitus was induced by intraperitoneal injection of streptozotocin (60 mg/kg). Rats were exposed to photobiomodulation with light-emitting diodes at a wavelength of 630–660 nm daily for 10 days. The irradiation time was 5 minutes. The content of nitrite and nitrate anions, total NO synthase activity, as well as the activity of its endothelial and inducible isoforms in red blood cells of rats were determined spectrophotometrically.
Results and Discussion. Under streptozotocin-induced diabetes mellitus, the content of nitrite and nitrate anions and NO synthase activity increased in the rats’ red blood cells, as well as in blood plasma. Moreover, we found an increase in inducible NO synthase activity and nitrate ion content in red blood cells of irradiated healthy rats. Also, there was an increase in nitrite and nitrate ion content after photobiomodulation therapy in the blood plasma of healthy animals. On the other hand, irradiation caused a decrease in NO synthase activity with a parallel reduction in both nitrite and nitrate anions content in erythrocytes and blood plasma of rats with experimental diabetes.
Conclusion. Photobiomodulation therapy protects rats’ red blood cells from nitrative stress during streptozotocin-induced diabetes mellitus.
Keywords
Full Text:
PDFReferences
Adane, T., Getaneh, Z., & Asrie, F. (2020). Red blood cell parameters and their correlation with renal function tests among diabetes mellitus patients: a comparative cross-sectional study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 3937-3946. doi:10.2147/dmso.s275392 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Allen, B. W., Stamler, J. S., & Piantadosi, C. A. (2009). Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends in Molecular Medicine, 15(10), 452-460. doi:10.1016/j.molmed.2009.08.002 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Antwi-Baffour, S., Kyeremeh, R., Boateng, S. O., Annison, L., & Seidu, M. A. (2018). Haematological parameters and lipid profile abnormalities among patients with Type-2 diabetes mellitus in Ghana. Lipids in Health and Disease, 17(1). doi:10.1186/s12944-018-0926-y Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Arashiki, N., Kimata, N., Manno, S., Mohandas, N., & Takakuwa, Y. (2013). Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence. Biochemistry, 52(34), 5760-5769. doi:10.1021/bi400405p Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress - A concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. doi:10.1016/j.jsps.2015.03.013 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bahadoran, Z., Mirmiran, P., Jeddi, S., Momenan, A. A., Azizi, F., & Ghasemi, A. (2018). The nitrate-nitrite-nitric oxide pathway: Findings from 20 years of the Tehran lipid and glucose study. International Journal of Endocrinology and Metabolism, 16(4 Suppl), e84775. doi:10.5812/ijem.84775 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Barolet, A. C., Litvinov, I. V., & Barolet, D. (2021). Light-induced nitric oxide release in the skin beyond UVA and blue light: Red & near-infrared wavelengths. Nitric Oxide: Biology and Chemistry, 117, 16-25. doi:10.1016/j.niox.2021.09.003 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chen, H., Tu, M., Shi, J., Wang, Y., Hou, Z., & Wang, J. (2021). Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Lasers in Medical Science, 36(3), 555-562. doi:10.1007/s10103-020-03057-4 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cheng, Y., Du, Y., Liu, H., Tang, J., Veenstra, A., & Kern, T. S. (2018). Photobiomodulation inhibits long-term structural and functional lesions of diabetic retinopathy. Diabetes, 67(2), 291-298. doi:10.2337/db17-0803 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Colombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., & Amaroli, A. (2021). Experimental and clinical applications of red and near-infrared photobiomodulation on endothelial dysfunction: A review. Biomedicines, 9(3), 274. doi:10.3390/biomedicines9030274 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dawson, J., & Knowles, R. G. (1998). A microtiter-plate assay of human NOS isoforms. Methods in molecular biology (Clifton, N.J.), 100, 237-242. doi:10.1385/1-59259-749-1:237 Crossref ● PubMed ● Google Scholar | ||||
| ||||
de Oliveira, H. A., Antonio, E. L., Silva, F. A., de Carvalho, P., Feliciano, R., Yoshizaki, A., Vieira, S. S., de Melo, B. L., Leal-Junior, E., Labat, R., Bocalini, D. S., Silva Junior, J. A., Tucci, P., & Serra, A. J. (2018). Protective effects of photobiomodulation against resistance exercise-induced muscle damage and inflammation in rats. Journal of Sports Sciences, 36(20), 2349-2357. doi:10.1080/02640414.2018.1457419 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dixon, L. J., Hughes, S. M., Rooney, K., Madden, A., Devine, A., Leahey, W., Henry, W., Johnston, G. D., & McVeigh, G. E. (2005). Increased superoxide production in hypertensive patients with diabetes mellitus: role of nitric oxide synthase. American Journal of Hypertension, 18(6), 839-843. doi:10.1016/j.amjhyper.2005.01.004 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dompe, C., Moncrieff, L., Matys, J., Grzech-Leśniak, K., Kocherova, I., Bryja, A., Bruska, M., Dominiak, M., Mozdziak, P., Skiba, T., Shibli, J. A., Angelova Volponi, A., Kempisty, B., & Dyszkiewicz-Konwińska, M. (2020). Photobiomodulation - underlying mechanism and clinical applications. Journal of Clinical Medicine, 9(6), 1724. doi:10.3390/jcm9061724 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Elgendy, A., Ali, M. A., Medhat, A., Zikri, E. N., & Ganem, M. M. (2020). Therapeutic and photobiomodulation effects of low-level laser irradiation on Egyptian patients with carpal tunnel syndrome: a placebo-controlled study. Journal of The Arab Society for Medical Research, 15(1), 18-24. doi:10.4103/jasmr.jasmr_7_20 Crossref ● Google Scholar | ||||
| ||||
Ferents, I. V., Brodyak, I. V., Lyuta, M. Ya., Burda, V. A., Fedorovych, A. M., & Sybirna, N. O. (2012). The effect of agmatine on L-arginine metabolism in erythrocytes under streptozotocin-induced diabetes in rats. The Ukrainian Biochemical Journal, 84(3), 55-62. (In Ukrainian) PubMed ● Google Scholar | ||||
| ||||
Förstermann, U., Xia, N., & Li, H. (2017). Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation Research, 120(4), 713-735. doi:10.1161/circresaha.116.309326 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Francesconi, F., Mingardi, R., DeKreutzenberg, S., & Avogaro, A. (2001). Effect of metabolic control on nitrite and nitrate metabolism in type 2 diabetic patients. Clinical and Experimental Pharmacology & Physiology, 28(7), 518-521. doi:10.1046/j.1440-1681.2001.03479.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gong, L., Zou, Z., Huang, L., Guo, S., & Xing, D. (2020). Photobiomodulation therapy decreases free fatty acid generation and release in adipocytes to ameliorate insulin resistance in type 2 diabetes. Cellular Signalling, 67, 109491. doi:10.1016/j.cellsig.2019.109491 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gong, L., Zou, Z., Liu, L., Guo, S., & Xing, D. (2021). Photobiomodulation therapy ameliorates hyperglycemia and insulin resistance by activating cytochrome c oxidase-mediated protein kinase B in muscle. Aging, 13(7), 10015-10033. doi:10.18632/aging.202760 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Grau, M., Kuck, L., Dietz, T., Bloch, W., & Simmonds, M. J. (2021). Sub-fractions of red blood cells respond differently to shear exposure following superoxide treatment. Biology, 10(1), 47. doi:10.3390/biology10010047 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
James, P. E., Lang, D., Tufnell-Barret, T., Milsom, A. B., & Frenneaux, M. P. (2004). Vasorelaxation by red blood cells and impairment in diabetes: reduced nitric oxide and oxygen delivery by glycated hemoglobin. Circulation Research, 94(7), 976-983. doi:10.1161/01.RES.0000122044.21787.01 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Jubelin, B. C., & Gierman, J. L. (1996). Erythrocytes may synthesize their own nitric oxide. American Journal of Hypertension, 9(12), 1214-1219. doi:10.1016/s0895-7061(96)00257-9 Crossref ● Google Scholar | ||||
| ||||
Karkada, G., Maiya, G. A., Arany, P., Rao, M., Adiga, S., & Kamath, S. U. (2022). Effect of photobiomodulation therapy on oxidative stress markers in healing dynamics of diabetic neuropathic wounds in Wistar rats. Cell Biochemistry and Biophysics, 80(1), 151-160. doi:10.1007/s12013-021-01021-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Karmash, O. I., Liuta, M. Y., Korobov, A. M., & Sybirna, N. O. (2020). The effect of photobiomodulation therapy on oxidative stress progressing in blood leukocytes of streptozotocin-induced diabetic rats. Cytology and Genetics, 54(5), 97-107. doi:10.3103/S0095452720050114 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Karmash, O. I., Liuta, M. Ya., Yefimenko N. V., & Sybirna N. O. (2021). The effect of photobiomodulation therapy on some indices of rats' blood cells functional state under experimental diabetes mellitus. Studia Biologica, 15(3), 3-16. doi:10.30970/sbi.1503.659 Crossref ● Google Scholar | ||||
| ||||
Karmash, O. I., Lіuta, M. Y., Yefimenko, N. V., Korobov, A. M., & Sybirna, N. O. (2018). The influence of low-level light radiation of red spectrum diapason on glycemic profile and physicochemical characteristics of rat's erythrocytes in diabetes mellitus. Fiziologichnyi Zhurnal, 64(6), 68-76. DOI: https://doi.org/10.15407/fz64.06.068 Crossref ● Google Scholar | ||||
| ||||
Linares, S. N., Beltrame, T., Ferraresi, C., Galdino, G., & Catai, A. M. (2020). Photobiomodulation effect on local hemoglobin concentration assessed by near-infrared spectroscopy in humans. Lasers in Medical Science, 35(3), 641-649. doi:10.1007/s10103-019-02861-x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lopez, J. (2013). Carl A. Burtis, Edward R. Ashwood and David E. Bruns (eds): Tietz textbook of clinical chemistry and molecular diagnosis (5th edition). Indian Journal of Clinical Biochemistry, 28(1), 104-105. doi:10.1007/s12291-012-0287-7 Crossref ● PMC ● Google Scholar | ||||
| ||||
Lowri, O. H., Rosenbraugh, M. J., Farr, A. L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mahdi, A., Cortese-Krott, M. M., Kelm, M., Li, N., & Pernow, J. (2021). Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radical Biology & Medicine, 168, 95-109. doi:0.1016/j.freeradbiomed.2021.03.020 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Marks, R. (2021). Photobiomodulation: a potential adjunctive obesity intervention a review. Advances in Obesity, Weight Management & Control, 11(4), 135-139. doi:10.15406/aowmc.2021.11.00347 Crossref ● Google Scholar | ||||
| ||||
Marunaka, Y. (2015). Roles of interstitial fluid pH in diabetes mellitus: Glycolysis and mitochondrial function. World Journal of Diabetes, 6(1), 125-135. doi:10.4239/wjd.v6.i1.125 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Maslakova, A. O., Liuta, M. Ya., & Sybirna, N. O. (2021). Effect of photobiomodulation therapy on the regulation of glucose uptake by lymphocytes in diabetes mellitus (review). Studia Biologica, 15(4), 87-104. doi:10.30970/sbi.1504.671 Crossref ● Google Scholar | ||||
| ||||
Matsuura, K., & Sugimoto, I. (2014). Absorption spectral analysis of Zn2+ or Cu2+ coordination with human serum albumin using Zincon. Analytical & Bioanalytical Techniques, 5: 209. doi:10.4172/2155-9872.1000209 Crossref ● Google Scholar | ||||
| ||||
Miranda, K. M., Espey, M. G., & Wink, D. A. (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5(1), 62-71. doi:10.1006/niox.2000.0319 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Musci, G., Di Marco, S., Bellenchi, G. C., & Calabrese, L. (1996). Reconstitution of ceruloplasmin by the Cu(I)-glutathione complex. Evidence for a role of Mg2+ and ATP. Journal of Biological Chemistry, 271(4), 1972-1978. doi:10.1074/jbc.271.4.1972 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Nolan, J., Godwin, I., de Raphélis-Soissan, V., Entsch, B., & Hegarty, R. (2015). Minimising the risk of nitrite toxicity in ruminants when dietary nitrate is used to mitigate methane emissions. Meat & Livestock Australia, 81. Retrieved from: https://www.mla.com.au/contentassets/fb6397fa12db43bbac68f08ef96fc40d/b.cch.6188_final_report.pdf Google Scholar | ||||
| ||||
Oishi, J. C., De Moraes, T. F., Buzinari, T. C., Cárnio, E. C., Parizotto, N. A., & Rodrigues, G. J. (2017). Hypotensive acute effect of photobiomodulation therapy on hypertensive rats. Life Sciences, 178, 56-60. doi:10.1016/j.lfs.2017.04.011 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Opländer, C., Rösner, J., Gombert, A., Brodski, A., Suvorava, T., Grotheer, V., van Faassen, E. E., Kröncke, K. D., Kojda, G., Windolf, J., & Suschek, C. V. (2013). Redox-mediated mechanisms and biological responses of copper-catalyzed reduction of the nitrite ion in vitro. Nitric Oxide: Biology and Chemistry, 35, 152-164. doi:0.1016/j.niox.2013.10.004 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pacheco, J. A., Schapochnik, A., Sá, C. C., Santiago, A. C. M., Martinez, G. L., & Yamaji, M. A. K. (2019). Applied transdérmic photobiomodulator therapy about the primary carotide artery in patients under hormonal blockers and dynude disorders and pathogenic flora of orofaringeo and systemic repercussions. American Journal of Biomedical Science & Research, 4(4), 271-278. doi:10.34297/ajbsr.2019.04.000813 Crossref ● Google Scholar | ||||
| ||||
Peng, W. K., Chen, L., Boehm, B. O., Han, J., & Loh, T. P. (2020). Molecular phenotyping of oxidative stress in diabetes mellitus with point-of-care NMR system. NPJ Aging and Mechanisms of Disease, 6, 11. doi:10.1038/s41514-020-00049-0 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Samuel, T. K., & Gitlin, J. D. (2006). Copper and nitric oxide meet in the plasma. Nature Chemical Biology, 2(9), 452-453. doi:10.1038/nchembio0906-452 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Silva Macedo, R., Peres Leal, M., Braga, T. T., Barioni, É. D., de Oliveira Duro, S., Ratto Tempestini Horliana, A. C., Câmara, N. O., Marcourakis, T., Farsky, S. H., & Lino-Dos-Santos-Franco, A. (2016). Photobiomodulation therapy decreases oxidative stress in the lung tissue after formaldehyde exposure: role of oxidant/antioxidant enzymes. Mediators of Inflammation, 2016, 9303126. doi:10.1155/2016/9303126 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Slivinska, O., & Iskra, R. (2020). The corrective effect of chromium and zinc citrates on NO-synthase activity of erythrocytes in rats with streptozotocin diabetes. The Animal Biology, 22(2), 38-42. doi:10.15407/animbiol22.02.038 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Smirnoff, N. (2018). Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radical Biology & Medicine, 122, 116-129. doi:10.1016/j.freeradbiomed.2018.03.033 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Stepanov, Y. V., Golovynska, I., Golovynskyi, S., Garmanchuk, L. V., Gorbach, O., Stepanova, L. I., Khranovska, N., Ostapchenko, L. I., Ohulchanskyy, T. Y., & Qu, J. (2022). Red and near infrared light-stimulated angiogenesis mediated via Ca2+ influx, VEGF production and NO synthesis in endothelial cells in macrophage or malignant environments. Journal of Photochemistry and Photobiology. B, Biology, 227, 112388. doi:10.1016/j.jphotobiol.2022.112388 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Su, H., Liu, X., Du, J., Deng, X., & Fan, Y. (2020). The role of hemoglobin in nitric oxide transport in vascular system. Medicine in Novel Technology and Devices, 5, 100034. doi:0.1016/j.medntd.2020.100034 Crossref ● Google Scholar | ||||
| ||||
Sunemi, S. M., Teixeira, I., Mansano, B., de Oliveira, H. A., Antonio, E. L., de Souza Oliveira, C., Leal-Junior, E., Tucci, P., & Serra, A. J. (2021). Post-resistance exercise photobiomodulation therapy has a more effective antioxidant effect than pre-application on muscle oxidative stress. Photochemical & Photobiological Sciences, 20(4), 585-595. doi:10.1007/s43630-021-00042-w Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tejero, J., Basu, S., Helms, C., Hogg, N., King, S. B., Kim-Shapiro, D. B., & Gladwin, M. T. (2012). Low NO concentration dependence of reductive nitrosylation reaction of hemoglobin. Journal of Biological Chemistry, 287(22), 18262-18274. doi:10.1074/jbc.M111.298927 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wallis, J. P. (2005). Nitric oxide and blood: a review. Transfusion Medicine, 15(1), 1-11. doi:10.1111/j.1365-3148.2005.00542.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Walski, T., Grzeszczuk-Kuć, K., Gałecka, K., Trochanowska-Pauk, N., Bohara, R., Czerski, A., Szułdrzyński, K., Królikowski, W., Detyna, J., & Komorowska, M. (2022). Near-infrared photobiomodulation of blood reversibly inhibits platelet reactivity and reduces hemolysis. Scientific Reports, 12(1), 4042. doi:10.1038/s41598-022-08053-y Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Walski, T., Drohomirecka, A., Bujok, J., Czerski, A., Wąż, G., Trochanowska-Pauk, N., Gorczykowski, M., Cichoń, R., & Komorowska, M. (2018). Low-level light therapy protects red blood cells against oxidative stress and hemolysis during extracorporeal circulation. Frontiers in Physiology, 9, 647. doi:10.3389/fphys.2018.00647 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wang, Q., & Zennadi, R. (2021). The role of RBC oxidative stress in sickle cell disease: from the molecular basis to pathologic implications. Antioxidants (Basel, Switzerland), 10(10), 1608. doi:10.3390/antiox10101608 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhao, Y., Wang, X., Noviana, M., & Hou, M. (2018). Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochimica et Biophysica Sinica, 50(7), 621-634. doi:10.1093/abbs/gmy055 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 A. O. Maslakova, M. Ya. Liuta
This work is licensed under a Creative Commons Attribution 4.0 International License.