PHOTOBIOMODULATION THERAPY PROTECTS RED BLOOD CELLS AGAINST NITRATIVE STRESS DURING STREPTOZOTOCIN-INDUCED DIABETES

A. O. Maslakova, M. Ya. Liuta


DOI: http://dx.doi.org/10.30970/sbi.1603.685

Abstract


Background. According to the International Diabetes Federation Diabetes Atlas, 10th edition, diabetes is responsible for 6.7 million deaths in 2021. Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia secondary to either resistance to insulin, insufficient insulin secretion, or both. Oxidative and nitrative stress is a vital part of the complex mechanism by which diabetes and its complications develop. It is known that Photobiomodulation therapy accelerates diabetic wound healing, treats relegated inflammation, and increases oxygen availability for cells. Although some basic molecular mechanisms caused by photobiomodulation therapy in different cell types are already known, they have not been studied in erythrocytes and are different due to the absence of central organelles such as nucleus and mitochondria. The aim of the study was to investigate the effect of photobiomodulation therapy on the development of nitrative stress in blood plasma and erythrocytes of rats from different experimental groups.
Materials and Methods. The study was performed on white outbred male rats weighing 130–180 g. The diabetes mellitus was induced by intraperitoneal injection of streptozotocin (60 mg/kg). Rats were exposed to photobiomodulation with light-emitting diodes at a wavelength of 630–660 nm daily for 10 days. The irradiation time was 5 minu­tes. The content of nitrite and nitrate anions, total NO synthase activity, as well as the activity of its endothelial and inducible isoforms in red blood cells of rats were determined spectrophotometrically.
Results and Discussion. Under streptozotocin-induced diabetes mellitus, the content of nitrite and nitrate anions and NO synthase activity increased in the rats’ red blood cells, as well as in blood plasma. Moreover, we found an increase in inducible NO synthase activity and nitrate ion content in red blood cells of irradiated healthy rats. Also, there was an increase in nitrite and nitrate ion content after photobiomodulation therapy in the blood plasma of healthy animals. On the other hand, irradiation caused a decrease in NO synthase activity with a parallel reduction in both nitrite and nitrate anions content in erythrocytes and blood plasma of rats with experimental diabetes.
Conclusion. Photobiomodulation therapy protects rats’ red blood cells from nitrative stress during streptozotocin-induced diabetes mellitus.


Keywords


diabetes mellitus, photobiomodulation therapy, nitrative stress, red blood cells

Full Text:

PDF

References


Adane, T., Getaneh, Z., & Asrie, F. (2020). Red blood cell parameters and their correlation with renal function tests among diabetes mellitus patients: a comparative cross-sectional study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 3937-3946. doi:10.2147/dmso.s275392
CrossrefPubMedPMCGoogle Scholar

Allen, B. W., Stamler, J. S., & Piantadosi, C. A. (2009). Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends in Molecular Medicine, 15(10), 452-460. doi:10.1016/j.molmed.2009.08.002
CrossrefPubMedPMCGoogle Scholar

Antwi-Baffour, S., Kyeremeh, R., Boateng, S. O., Annison, L., & Seidu, M. A. (2018). Haematological parameters and lipid profile abnormalities among patients with Type-2 diabetes mellitus in Ghana. Lipids in Health and Disease, 17(1). doi:10.1186/s12944-018-0926-y
CrossrefPubMedPMCGoogle Scholar

Arashiki, N., Kimata, N., Manno, S., Mohandas, N., & Takakuwa, Y. (2013). Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence. Biochemistry, 52(34), 5760-5769. doi:10.1021/bi400405p
CrossrefPubMedPMCGoogle Scholar

Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress - A concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. doi:10.1016/j.jsps.2015.03.013
CrossrefPubMedPMCGoogle Scholar

Bahadoran, Z., Mirmiran, P., Jeddi, S., Momenan, A. A., Azizi, F., & Ghasemi, A. (2018). The nitrate-nitrite-nitric oxide pathway: Findings from 20 years of the Tehran lipid and glucose study. International Journal of Endocrinology and Metabolism, 16(4 Suppl), e84775. doi:10.5812/ijem.84775
CrossrefPubMedPMCGoogle Scholar

Barolet, A. C., Litvinov, I. V., & Barolet, D. (2021). Light-induced nitric oxide release in the skin beyond UVA and blue light: Red & near-infrared wavelengths. Nitric Oxide: Biology and Chemistry, 117, 16-25. doi:10.1016/j.niox.2021.09.003
CrossrefPubMedGoogle Scholar

Chen, H., Tu, M., Shi, J., Wang, Y., Hou, Z., & Wang, J. (2021). Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Lasers in Medical Science, 36(3), 555-562. doi:10.1007/s10103-020-03057-4
CrossrefPubMed ● Google Scholar

Cheng, Y., Du, Y., Liu, H., Tang, J., Veenstra, A., & Kern, T. S. (2018). Photobiomodulation inhibits long-term structural and functional lesions of diabetic retinopathy. Diabetes, 67(2), 291-298. doi:10.2337/db17-0803
CrossrefPubMedPMCGoogle Scholar

Colombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., & Amaroli, A. (2021). Experimental and clinical applications of red and near-infrared photobiomodulation on endothelial dysfunction: A review. Biomedicines, 9(3), 274. doi:10.3390/biomedicines9030274
CrossrefPubMedPMCGoogle Scholar

Dawson, J., & Knowles, R. G. (1998). A microtiter-plate assay of human NOS isoforms. Methods in molecular biology (Clifton, N.J.), 100, 237-242. doi:10.1385/1-59259-749-1:237
CrossrefPubMedGoogle Scholar

de Oliveira, H. A., Antonio, E. L., Silva, F. A., de Carvalho, P., Feliciano, R., Yoshizaki, A., Vieira, S. S., de Melo, B. L., Leal-Junior, E., Labat, R., Bocalini, D. S., Silva Junior, J. A., Tucci, P., & Serra, A. J. (2018). Protective effects of photobiomodulation against resistance exercise-induced muscle damage and inflammation in rats. Journal of Sports Sciences, 36(20), 2349-2357. doi:10.1080/02640414.2018.1457419
CrossrefPubMedGoogle Scholar

Dixon, L. J., Hughes, S. M., Rooney, K., Madden, A., Devine, A., Leahey, W., Henry, W., Johnston, G. D., & McVeigh, G. E. (2005). Increased superoxide production in hypertensive patients with diabetes mellitus: role of nitric oxide synthase. American Journal of Hypertension, 18(6), 839-843. doi:10.1016/j.amjhyper.2005.01.004
Crossref PubMedGoogle Scholar

Dompe, C., Moncrieff, L., Matys, J., Grzech-Leśniak, K., Kocherova, I., Bryja, A., Bruska, M., Dominiak, M., Mozdziak, P., Skiba, T., Shibli, J. A., Angelova Volponi, A., Kempisty, B., & Dyszkiewicz-Konwińska, M. (2020). Photobiomodulation - underlying mechanism and clinical applications. Journal of Clinical Medicine, 9(6), 1724. doi:10.3390/jcm9061724
CrossrefPubMedPMCGoogle Scholar

Elgendy, A., Ali, M. A., Medhat, A., Zikri, E. N., & Ganem, M. M. (2020). Therapeutic and photobiomodulation effects of low-level laser irradiation on Egyptian patients with carpal tunnel syndrome: a placebo-controlled study. Journal of The Arab Society for Medical Research, 15(1), 18-24. doi:10.4103/jasmr.jasmr_7_20
CrossrefGoogle Scholar

Ferents, I. V., Brodyak, I. V., Lyuta, M. Ya., Burda, V. A., Fedorovych, A. M., & Sybirna, N. O. (2012). The effect of agmatine on L-arginine metabolism in erythrocytes under streptozotocin-induced diabetes in rats. The Ukrainian Biochemical Journal, 84(3), 55-62. (In Ukrainian)
PubMedGoogle Scholar

Förstermann, U., Xia, N., & Li, H. (2017). Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation Research, 120(4), 713-735. doi:10.1161/circresaha.116.309326
CrossrefPubMedGoogle Scholar

Francesconi, F., Mingardi, R., DeKreutzenberg, S., & Avogaro, A. (2001). Effect of metabolic control on nitrite and nitrate metabolism in type 2 diabetic patients. Clinical and Experimental Pharmacology & Physiology, 28(7), 518-521. doi:10.1046/j.1440-1681.2001.03479.x
CrossrefPubMedGoogle Scholar

Gong, L., Zou, Z., Huang, L., Guo, S., & Xing, D. (2020). Photobiomodulation therapy decreases free fatty acid generation and release in adipocytes to ameliorate insulin resistance in type 2 diabetes. Cellular Signalling, 67, 109491. doi:10.1016/j.cellsig.2019.109491
CrossrefPubMedGoogle Scholar

Gong, L., Zou, Z., Liu, L., Guo, S., & Xing, D. (2021). Photobiomodulation therapy ameliorates hyperglycemia and insulin resistance by activating cytochrome c oxidase-mediated protein kinase B in muscle. Aging, 13(7), 10015-10033. doi:10.18632/aging.202760
CrossrefPubMedPMCGoogle Scholar

Grau, M., Kuck, L., Dietz, T., Bloch, W., & Simmonds, M. J. (2021). Sub-fractions of red blood cells respond differently to shear exposure following superoxide treatment. Biology, 10(1), 47. doi:10.3390/biology10010047
CrossrefPubMedPMCGoogle Scholar

James, P. E., Lang, D., Tufnell-Barret, T., Milsom, A. B., & Frenneaux, M. P. (2004). Vasorelaxation by red blood cells and impairment in diabetes: reduced nitric oxide and oxygen delivery by glycated hemoglobin. Circulation Research, 94(7), 976-983. doi:10.1161/01.RES.0000122044.21787.01
CrossrefPubMedGoogle Scholar

Jubelin, B. C., & Gierman, J. L. (1996). Erythrocytes may synthesize their own nitric oxide. American Journal of Hypertension, 9(12), 1214-1219. doi:10.1016/s0895-7061(96)00257-9
CrossrefGoogle Scholar

Karkada, G., Maiya, G. A., Arany, P., Rao, M., Adiga, S., & Kamath, S. U. (2022). Effect of photobiomodulation therapy on oxidative stress markers in healing dynamics of diabetic neuropathic wounds in Wistar rats. Cell Biochemistry and Biophysics, 80(1), 151-160. doi:10.1007/s12013-021-01021-9
CrossrefPubMedPMCGoogle Scholar

Karmash, O. I., Liuta, M. Y., Korobov, A. M., & Sybirna, N. O. (2020). The effect of photobiomodulation therapy on oxidative stress progressing in blood leukocytes of streptozotocin-induced diabetic rats. Cytology and Genetics, 54(5), 97-107. doi:10.3103/S0095452720050114 (In Ukrainian)
CrossrefGoogle Scholar

Karmash, O. I., Liuta, M. Ya., Yefimenko N. V., & Sybirna N. O. (2021). The effect of photobiomodulation therapy on some indices of rats' blood cells functional state under experimental diabetes mellitus. Studia Biologica, 15(3), 3-16. doi:10.30970/sbi.1503.659
CrossrefGoogle Scholar

Karmash, O. I., Lіuta, M. Y., Yefimenko, N. V., Korobov, A. M., & Sybirna, N. O. (2018). The influence of low-level light radiation of red spectrum diapason on glycemic profile and physicochemical characteristics of rat's erythrocytes in diabetes mellitus. Fiziologichnyi Zhurnal, 64(6), 68-76. DOI: https://doi.org/10.15407/fz64.06.068
CrossrefGoogle Scholar

Linares, S. N., Beltrame, T., Ferraresi, C., Galdino, G., & Catai, A. M. (2020). Photobiomodulation effect on local hemoglobin concentration assessed by near-infrared spectroscopy in humans. Lasers in Medical Science, 35(3), 641-649. doi:10.1007/s10103-019-02861-x
CrossrefPubMedGoogle Scholar

Lopez, J. (2013). Carl A. Burtis, Edward R. Ashwood and David E. Bruns (eds): Tietz textbook of clinical chemistry and molecular diagnosis (5th edition). Indian Journal of Clinical Biochemistry, 28(1), 104-105. doi:10.1007/s12291-012-0287-7
CrossrefPMCGoogle Scholar

Lowri, O. H., Rosenbraugh, M. J., Farr, A. L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Mahdi, A., Cortese-Krott, M. M., Kelm, M., Li, N., & Pernow, J. (2021). Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radical Biology & Medicine, 168, 95-109. doi:0.1016/j.freeradbiomed.2021.03.020
CrossrefPubMedGoogle Scholar

Marks, R. (2021). Photobiomodulation: a potential adjunctive obesity intervention a review. Advances in Obesity, Weight Management & Control, 11(4), 135-139. doi:10.15406/aowmc.2021.11.00347
CrossrefGoogle Scholar

Marunaka, Y. (2015). Roles of interstitial fluid pH in diabetes mellitus: Glycolysis and mitochondrial function. World Journal of Diabetes, 6(1), 125-135. doi:10.4239/wjd.v6.i1.125
CrossrefPubMedPMCGoogle Scholar

Maslakova, A. O., Liuta, M. Ya., & Sybirna, N. O. (2021). Effect of photobiomodulation therapy on the regulation of glucose uptake by lymphocytes in diabetes mellitus (review). Studia Biologica, 15(4), 87-104. doi:10.30970/sbi.1504.671
CrossrefGoogle Scholar

Matsuura, K., & Sugimoto, I. (2014). Absorption spectral analysis of Zn2+ or Cu2+ coordination with human serum albumin using Zincon. Analytical & Bioanalytical Techniques, 5: 209. doi:10.4172/2155-9872.1000209
CrossrefGoogle Scholar

Miranda, K. M., Espey, M. G., & Wink, D. A. (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5(1), 62-71. doi:10.1006/niox.2000.0319
CrossrefPubMedGoogle Scholar

Musci, G., Di Marco, S., Bellenchi, G. C., & Calabrese, L. (1996). Reconstitution of ceruloplasmin by the Cu(I)-glutathione complex. Evidence for a role of Mg2+ and ATP. Journal of Biological Chemistry, 271(4), 1972-1978. doi:10.1074/jbc.271.4.1972
CrossrefPubMedGoogle Scholar

Nolan, J., Godwin, I., de Raphélis-Soissan, V., Entsch, B., & Hegarty, R. (2015). Minimising the risk of nitrite toxicity in ruminants when dietary nitrate is used to mitigate methane emissions. Meat & Livestock Australia, 81. Retrieved from: https://www.mla.com.au/contentassets/fb6397fa12db43bbac68f08ef96fc40d/b.cch.6188_final_report.pdf
Google Scholar

Oishi, J. C., De Moraes, T. F., Buzinari, T. C., Cárnio, E. C., Parizotto, N. A., & Rodrigues, G. J. (2017). Hypotensive acute effect of photobiomodulation therapy on hypertensive rats. Life Sciences, 178, 56-60. doi:10.1016/j.lfs.2017.04.011
CrossrefPubMedGoogle Scholar

Opländer, C., Rösner, J., Gombert, A., Brodski, A., Suvorava, T., Grotheer, V., van Faassen, E. E., Kröncke, K. D., Kojda, G., Windolf, J., & Suschek, C. V. (2013). Redox-mediated mechanisms and biological responses of copper-catalyzed reduction of the nitrite ion in vitro. Nitric Oxide: Biology and Chemistry, 35, 152-164. doi:0.1016/j.niox.2013.10.004
CrossrefPubMedGoogle Scholar

Pacheco, J. A., Schapochnik, A., Sá, C. C., Santiago, A. C. M., Martinez, G. L., & Yamaji, M. A. K. (2019). Applied transdérmic photobiomodulator therapy about the primary carotide artery in patients under hormonal blockers and dynude disorders and pathogenic flora of orofaringeo and systemic repercussions. American Journal of Biomedical Science & Research, 4(4), 271-278. doi:10.34297/ajbsr.2019.04.000813
CrossrefGoogle Scholar

Peng, W. K., Chen, L., Boehm, B. O., Han, J., & Loh, T. P. (2020). Molecular phenotyping of oxidative stress in diabetes mellitus with point-of-care NMR system. NPJ Aging and Mechanisms of Disease, 6, 11. doi:10.1038/s41514-020-00049-0
CrossrefPubMedPMCGoogle Scholar

Samuel, T. K., & Gitlin, J. D. (2006). Copper and nitric oxide meet in the plasma. Nature Chemical Biology, 2(9), 452-453. doi:10.1038/nchembio0906-452
CrossrefPubMedGoogle Scholar

Silva Macedo, R., Peres Leal, M., Braga, T. T., Barioni, É. D., de Oliveira Duro, S., Ratto Tempestini Horliana, A. C., Câmara, N. O., Marcourakis, T., Farsky, S. H., & Lino-Dos-Santos-Franco, A. (2016). Photobiomodulation therapy decreases oxidative stress in the lung tissue after formaldehyde exposure: role of oxidant/antioxidant enzymes. Mediators of Inflammation, 2016, 9303126. doi:10.1155/2016/9303126
CrossrefPubMedPMCGoogle Scholar

Slivinska, O., & Iskra, R. (2020). The corrective effect of chromium and zinc citrates on NO-synthase activity of erythrocytes in rats with streptozotocin diabetes. The Animal Biology, 22(2), 38-42. doi:10.15407/animbiol22.02.038 (In Ukrainian)
CrossrefGoogle Scholar

Smirnoff, N. (2018). Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radical Biology & Medicine, 122, 116-129. doi:10.1016/j.freeradbiomed.2018.03.033
CrossrefPubMedPMCGoogle Scholar

Stepanov, Y. V., Golovynska, I., Golovynskyi, S., Garmanchuk, L. V., Gorbach, O., Stepanova, L. I., Khranovska, N., Ostapchenko, L. I., Ohulchanskyy, T. Y., & Qu, J. (2022). Red and near infrared light-stimulated angiogenesis mediated via Ca2+ influx, VEGF production and NO synthesis in endothelial cells in macrophage or malignant environments. Journal of Photochemistry and Photobiology. B, Biology, 227, 112388. doi:10.1016/j.jphotobiol.2022.112388
CrossrefPubMedGoogle Scholar

Su, H., Liu, X., Du, J., Deng, X., & Fan, Y. (2020). The role of hemoglobin in nitric oxide transport in vascular system. Medicine in Novel Technology and Devices, 5, 100034. doi:0.1016/j.medntd.2020.100034
CrossrefGoogle Scholar

Sunemi, S. M., Teixeira, I., Mansano, B., de Oliveira, H. A., Antonio, E. L., de Souza Oliveira, C., Leal-Junior, E., Tucci, P., & Serra, A. J. (2021). Post-resistance exercise photobiomodulation therapy has a more effective antioxidant effect than pre-application on muscle oxidative stress. Photochemical & Photobiological Sciences, 20(4), 585-595. doi:10.1007/s43630-021-00042-w
CrossrefPubMedGoogle Scholar

Tejero, J., Basu, S., Helms, C., Hogg, N., King, S. B., Kim-Shapiro, D. B., & Gladwin, M. T. (2012). Low NO concentration dependence of reductive nitrosylation reaction of hemoglobin. Journal of Biological Chemistry, 287(22), 18262-18274. doi:10.1074/jbc.M111.298927
CrossrefPubMedPMCGoogle Scholar

Wallis, J. P. (2005). Nitric oxide and blood: a review. Transfusion Medicine, 15(1), 1-11. doi:10.1111/j.1365-3148.2005.00542.x
CrossrefPubMedGoogle Scholar

Walski, T., Grzeszczuk-Kuć, K., Gałecka, K., Trochanowska-Pauk, N., Bohara, R., Czerski, A., Szułdrzyński, K., Królikowski, W., Detyna, J., & Komorowska, M. (2022). Near-infrared photobiomodulation of blood reversibly inhibits platelet reactivity and reduces hemolysis. Scientific Reports, 12(1), 4042. doi:10.1038/s41598-022-08053-y
CrossrefPubMedPMCGoogle Scholar

Walski, T., Drohomirecka, A., Bujok, J., Czerski, A., Wąż, G., Trochanowska-Pauk, N., Gorczykowski, M., Cichoń, R., & Komorowska, M. (2018). Low-level light therapy protects red blood cells against oxidative stress and hemolysis during extracorporeal circulation. Frontiers in Physiology, 9, 647. doi:10.3389/fphys.2018.00647
CrossrefPubMedPMCGoogle Scholar

Wang, Q., & Zennadi, R. (2021). The role of RBC oxidative stress in sickle cell disease: from the molecular basis to pathologic implications. Antioxidants (Basel, Switzerland), 10(10), 1608. doi:10.3390/antiox10101608
CrossrefPubMedPMCGoogle Scholar

Zhao, Y., Wang, X., Noviana, M., & Hou, M. (2018). Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochimica et Biophysica Sinica, 50(7), 621-634. doi:10.1093/abbs/gmy055
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 A. O. Maslakova, M. Ya. Liuta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.