PARTICIPATION OF ALDEHYDES IN OXIDATIVE STRESS PARAMETERS DEVELOPMENT UNDER RHABDOMYOLYSIS AND STREPTOZOTOCIN-INDUCED DIABETES RAT’S MODELS
DOI: http://dx.doi.org/10.30970/sbi.0801.323
Abstract
Hyperproduction of aldehydes – carbonyl stress, is resulted from lipid peroxidation and/or glycosylation. We suggest that endogenous aldehydes can affect some oxidative stress parameters development. The aim of this research is to distinguish the role of aldehydes in oxidative stress parameters development under rat’s experimental models of carbonyl stress: glycerol-stimulated rhabdomyolysis (RM, model of oxidative stress) and streptozotocin-induced diabetes (STZD, model of monosaccharide stress). To separate the influence of aldehydes an acceptor of aldehydes – dimedone was applied. It has been revealed the increasing of total aldehydes content in plasma in 2.9 times under RM and in 2.7 times under STZD. Oral administration of dimedone (10 ml/kg) resulted in the aldehydes content decreasing in 4.7 times for RM and in 3 times for STZD. It was also observed that oxidative stress parameters changed toward normalization: protein’s CO-groups content in plasma and liver was reduced on 38 and 50 % respectively, TBA-reactive products in liver on 62 % under RM. On STZD model carbonyl protein’s groups was decreased in plasma and liver on 58 and 42 % respectively, TBA- reactive products in liver – on 80 %. Furthermore, the decreasing of carboxymethyl lysine in plasma on 38 % and the increasing of reduced low weight SH-groups in liver on 70 % were observed. Thus, it has been experimentally proved, that endogenous aldehydes take part in some oxidative stress parameters development. Therefore, acceptors of aldehydes are promising as components of complex treatment programs for pathologies with oxidative stress and/or hyperglycemia.
Keywords
Full Text:
PDF (Українська)References
1. Кожем’якін Ю.М., Хромов О.С. Науково-методичні рекомендації з утримання лабораторних тварин. Київ: Авіцена, 2002. 156 с.
2. Нейланд О.Я. Органическая химия: учеб. для хим. вузов. Москва: Высшая школа, 1990. 750 с.
3. Токарчук К.О., Капустяненко Л.Г., Шандренко С.Г. Роль альдегідів в розвитку оксидативного стресу при рабдоміолізі у щурів. Фізіол. журнал, 2013; 59 (1): 25–30.
4. Чумаченко І.М., Капустяненко Л.Г., Шандренко С.Г. Вплив лабільного феруму крові на розвиток нітрозативного стресу за умов експериментального рабдоміолізу у щурів. Біологічні Студії, 2012; 6(3): 105–114.
5. Шандренко С.Г. Утворення пулу лабільного заліза в крові при рабдоміолізі у щурів. Укр. біохім. журнал, 2012; 84(6): 124-130.
6. Alamdari D.H., Kostidou E., Paletas K. et al. High sensitivity enzyme-linked immunosorbent assay (ELISA) method for measuring protein carbonyl in samples with low amounts of protein. Free Rad. Biol. Med, 2005; 39: 1362-1367. | |
| |
7. Andersen M.E., Clewell H.J., Bermudez E. et al. Formaldehyde: integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound. Toxicol. Sci, 2010; 118(2): 716-731. | |
| |
8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-due binding. Anal. Biochem, 1976; 72: 248-254. | |
| |
9. Desai M.K., Chang T., Wang H. et al. Oxidative stress and aging: Is methylglyoxal the hidden enemy? Can. J. Physiol. Pharmacol, 2010; 88(3): 273-284. | |
| |
10. Heck H., Casanova M. The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity. Regul. Toxicol. Pharmacol, 2004; 40(2): 92-106. | |
| |
11. Heck H., Casanova M., Dodd P. et al. Formaldehyde (CH2O) concentrations in the blood of humans and Fischer-344 rats exposed to CH2O under controlled conditions. Am. Ind. Hyg. Assoc. J, 1985; 46(1): 1-3. | |
| |
12. Hu M.L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol,1994; 233: 380-385. | |
| |
13. Janero D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biol. Med, 1990; 9(6): 515-540. | |
| |
14. Lam C.F., Croatt A.J., Richardson D.M. et al. Heart failure increases protein expression and enzymatic activity of heme oxygenase-1 in lung. Cardiovasc. Res, 2005; 65: 203-210. | |
| |
15. Lee C.H., Tsai C.M. Quantification of bacterial lipopolysaccharides by the purpald assay: Measuring formaldehyde generated from 2-keto-3-deoxyoctonate and heptose at the inner core by periodate oxidation. Anal. Biochem, 1999; 267: 161-168. | |
| |
16. Li L., Jiang L., Geng C. et al. The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells. Free Radical Res, 2008; 42: 354-361. | |
| |
17. Luo J., Robinson J. P., Shi R. Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress. Neurochem. Int, 2005; 47: 449-457. | |
| |
18. Metz B., Kersten G.F., Hoogerhout P. et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J. Biol. Chem, 2004; 279(8): 6235-6243. | |
| |
19. National Academy of Sciences, National Research Council, Chemical-Biological Coordination Center, Review, 1953; 5: 28. | |
| |
20. Negre-Salvayre A., Coatrieux C., Ingueneau C., Salvayre R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br. J. Pharmacol, 2008; 153(1): 6-20. | |
| |
21. Petersen R.D., Doorn J.A. Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radical Biol. Med, 2004; 37(7): 937-945. | |
| |
22. Rebolledo O.R., Actis Dato S.M. Postprandial hyperglycemia and hyperlipidemia-generated glycoxidative stress: its contribution to the pathogenesis of diabetes complications. Eur. Rev. Med. Pharmacol. Sci, 2005; 9: 191-208. | |
| |
23. Schneider C., Porter N.A., Brash A.R. Routes to 4-hydroxynonenal: Fundamental Issues in the Mechanisms of Lipid Peroxidation. J. Biol. Chem, 2008; 283(23): 15539-15543. | |
| |
24. Spencer D., Henshall T. The kinetics and mechanism of the reaction of formaldehyde with dimedone. Part I. J. Am. Chem. Soc, 1955; 77(7):1943-1948. | |
| |
25. Thornalley J.P. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems - role in ageing and disease. Drug. Metabol. Drug. Interact, 2008; 23(1-2): 125-150. | |
| |
26. Uchida K., Kanematsu M., Morimitsu Y. et al. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J. Biol. Chem, 1998; 273(23): 16058-16066. | |
| |
27. Vincent A.M., Russell J.W., Low P., Feldman E.L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev, 2004; 25(4): 612-628. | |
| |
28. Zhu Q., Sun Z., Jiang Y. Acrolein scavengers: reactivity, mechanism and impact on health. Mol. Nutr. Food Res, 2011; 55(9): 1375-1390. |
29. Пат. 2400822 RU, МПК G 09 В23/28. Способ моделирования сахарного диабета I типа у крыс. Закирьянов А.Р., Великий Д.А., Онищенко Н.А., Клименко Е.Д., Поздняков О.М. Опубл. 27.09.2010, Бюл. № 1.
Refbacks
- There are currently no refbacks.
Copyright (c) 2014 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.