MOLECULAR RESPONSES OF THE BIVALVE MOLLUSKS FROM THE COOLING POND AS A MODEL FOR PREDICTION OF CONTEMPORARY ENVIRONMENTAL CHALLENGES

L L. Gnatyshyna, O. O. Turta, I. V. Yurchak, N. I. Boyko, A. Ye. Mudra, H. I. Falfushynska, O. B. Stoliar


DOI: http://dx.doi.org/10.30970/sbi.0801.322

Abstract


To reveal a potential combined effect of pollution and continuos warming towards freshwater organisms, the molecular responses of stress and toxicity were compared during two years in the bivalve mollusks Anodonta anatina from the cooling pond of Khmelnytskyi Nuclear Power Plant (N-group) and from the ponds in the forestry (F-group) and agricultural (A-group) areas. Using Classification and Regression Tree (CART) software on the basis of a set of studied markers, characteristics for the distinguishing of N-group were selected. Firstly, it was the constantly elevated level of the vitellogenin-like protein in gonads and hemolymph of male specimens that witness the effect of endocrine disruption. The mussels of N-group demonstrated on oxidative injury with highest values of the Index of inter-seasonal variability for oxidized glutathione and metallothionein-related thiols among three groups, and constantly high level of apoptotic activity in the digestive gland. Remarkably higher levels of copper and cadmium within the tissues were detected in the N-group reflecting the industrial pollution. These metals were preferentially bound to metal-buffering protein metallothionein. A combination of these characteristics  demon­strates that stable elevated temperature jointly with industrial pollution caused a partial apoptotic elimination of cells with the nuclear lesions and provoked the exceeding of resistance of stress-related responses and reproduction-related functions in the mussels.


Keywords


Anodonta anatina, warming effect, pollution, metallothioneins, apoptosis, oxidative injury, endocrine disruption

Full Text:

PDF

References


1. Aebi H. Catalase. In: Bergmeyer H.U. (Ed.) Methods of Enzymatic Analysis. London: Academic Press, 1974: 671-684.
https://doi.org/10.1016/B978-0-12-091302-2.50032-3

2. Anderson M.D. Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology, 1985; 113: 548-555.
https://doi.org/10.1016/S0076-6879(85)13073-9

3. Anestis A., Lazou A., Pörtner H.O., Michaelidis B. Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2007; 293(2): 911-921.
https://doi.org/10.1152/ajpregu.00124.2007
PMid:17522122

4. Baršienė J., Andreikenaite L., Rybakovas A. Cytogenetic damage in perch (Perca fluviatilis L.) and duck mussel (Anodonta anatina L.) exposed to crude oil. Ekologija, 2006; 1: 25-31.

5. Baudrimont M., Lemaire-Gony S., Ribeyre F. et al. Seasonal variations of metallothionein concentrations in the Asiatic clam (Corbicula fluminea). Comparative Biochemistry and Physiology, 1997; 118 C(3): 361-367.
https://doi.org/10.1016/S0742-8413(97)00157-6

6. Bebianno M.J, Barreira L. Polycyclic aromatic hydrocarbons concentrations and biomarker responses in the clam Ruditapes decussatus transplanted in the Ria Formosa lagoon. Ecotoxicology and Environmental Safety, 2009; 72(10): 1849-1860.
https://doi.org/10.1016/j.ecoenv.2009.03.016
PMid:19539372

7. Bergmeyer H.U., Bernt E. Lactate dehydrogenase U.V. assay with pyruvate and NADH. In: Bergmeyer H.U., Gawehn K. (Eds.). Methods of Enzymatic Analysis. New York: Academic Press, 1974; 574-579.
https://doi.org/10.1016/B978-0-12-091302-2.50010-4

8. Blaise C., Gagne F., Pellerin J., Hansen P.D. Determination of vitellogenin-like properties in Mya arenaria hemolymph (Saguenay Fjord, Canada): A potential biomarker for endocrine disruption. Environ. Toxicol. Chem, 1999; 14(5): 455-465.
https://doi.org/10.1002/(SICI)1522-7278(199912)14:5<455::AID-TOX2>3.0.CO;2-8

9. Bonomini M., Dottori S., Amoroso A. et al. Increased platelet phosphatidylserine exposure and caspase activation in chronic uremia. Thrombosis and Haemostasis, 2004; 2(8): 1-8.
https://doi.org/10.1111/j.1538-7836.2004.00837.x
PMid:15304031

10. Cai L., Satoh M., Tohyama Ch., Cherian M.G. Metallothionein in radiation exposure: its induction and protective role. Toxicology, 1999; 132(2-3): 85 98.
https://doi.org/10.1016/S0300-483X(98)00150-4

11. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergo-vernmental Panel on Climate Change. In: Pachauri R.K., Reisinger A. (Eds.). Climate Change 2007: Synthesis Report. Geneva, Switzerland: IPCC, 2007. 104 p.

12. Da Ros L., Meneghetti F., Nasci C. Field application of lysosomal destabilisation indices in the mussel Mytilus galloprovincialis: biomonitoring and transplantation in the Lagoon of Venice (north-east Italy). Marine Environmental Research, 2002; 54(3-5):817 822.
https://doi.org/10.1016/S0141-1136(02)00123-X

13. De Lafontaine Y., Gagné F., Blaise Ch. et al. Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St Lawrence River (Canada). Aquatic Toxicology, 2000; 50(1-2): 51-71.
https://doi.org/10.1016/S0166-445X(99)00094-6

14. Falfushynska H.I., Delahaut L., Stolyar O.B. et al. Multi-biomarkers approach in different organs of Anodonta cygnea from the Dnister basin (Ukraine). Archives of Environmental Contamination and Toxicology, 2009; 57: 86-95.
https://doi.org/10.1007/s00244-008-9234-2
PMid:18841409

15. Falfushynska H.I., Gnatyshyna L.L., Golubev A.P., Stoliar O.B. Main partitioning criteria for the characterization of the health status in the freshwater mussels Anodonta cygnea from spontaneously polluted area in Western Ukraine. Environ. Toxicol. Chem, 2012; 27(8): 485-494.
https://doi.org/10.1002/tox.20663
PMid:22764078

16. Falfushynska H.I., Stolyar O.B. Responses of biochemical markers in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotoxicol. Environ. Saf, 2009; 72(3): 729-736.
https://doi.org/10.1016/j.ecoenv.2008.04.006
PMid:18514900

17. Farcy E., Voiseux C., Lebel J.M., Fievet B. Seasonal changes in mRNA encoding for cell stress markers in the oyster Crassostrea gigas exposed to radioactive discharges in their natural environment. J. Environ. Eng. Sci, 2007; 374(2-3): 32-341.
https://doi.org/10.1016/j.scitotenv.2006.11.014
PMid:17289119

18. Fetisov A.N., Rubanovich A.V., Slipchenko T.S., Shevchenko V.A. The structure of Dreissena polymorpha populations from basins adjacent to the Chernobyl atomic power station. J. Environ. Eng. Sci, 1992; 112(1): 115-124.
https://doi.org/10.1016/0048-9697(92)90242-K

19. Frantsevich L., Korniushin A., Pankov I. et al. Application of molluscs for radioecological monitoring of the Chernobyl outburst. Environmental Pollution, 1996; 94(1): 91-100.
https://doi.org/10.1016/S0269-7491(96)00105-4

20. Gagnaire B. Gagné F. André C. et al. Development of biomarkers of stress related to endocrine disruption in gastropods: alkali-labile phosphates, protein-bound lipids and vitellogenin-like proteins. Aquatic Toxicology, 2009; 92(3): 155-167.
https://doi.org/10.1016/j.aquatox.2009.01.012
PMid:19269698

21. Geffard A., Amiard-Triquet C., Amiard J.C. Do seasonal changes affect metallothionein induction by metals in mussels? Ecotoxicol. Environ. Saf, 2005; 61(2): 209-220.
https://doi.org/10.1016/j.ecoenv.2005.01.004
PMid:15883092

22. Gnatyshyna L., Falfushynska H., Bodilovska O. et al. Metallothionein and glutathione in Lymnaea stagnalis determine the specificity of responses on the effects of ionising radiation. Radioprotection, 2012; 47(2): 231-242.
https://doi.org/10.1051/radiopro/2012004

23. Griffith O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 1980; 106(1): 207-212.
https://doi.org/10.1016/0003-2697(80)90139-6

24. Guerlet E., Ledy K., Meyer A., Giambérini L. Towards a validation of a cellular biomarker suite in native and transplanted zebra mussels: a 2-year integrative field study of seasonal and pollution-induced variations. Aquatic Toxicology, 2007; 81(4): 377-388.
https://doi.org/10.1016/j.aquatox.2006.12.016
PMid:17313981

25. Hagger J.A., Jones M.B., Leonard D. et al. Biomarkers and integrated environmental risk assessment: Are there more questions than answers? Environmental Management, 2006; 2(4): 321-329.
https://doi.org/10.1002/ieam.5630020403
PMid:17069174

26. Ivanenko G., Goloshchapov A., Fatkullina L., Burlakova E. Relationship between plasma glutathione levels and lipid antioxidants of people exposed to low doses of radiation. Radioprotection, 2008; 43(5): 54.
https://doi.org/10.1051/radiopro:2008623

27. Kiss T. Apoptosis and its functional significance in molluscs. Apoptosis, 2010; 15(3): 313-321.
https://doi.org/10.1007/s10495-009-0446-3
PMid:20047074

28. Lannig G., Flores J.F., Sokolova I.M. Temperature-dependent stress response in oysters, Crassostrea virginica: Pollution reduces temperature tolerance in oysters. Aquatic Toxicology, 2006; 79(3): 278-287.
https://doi.org/10.1016/j.aquatox.2006.06.017
PMid:16887206

29. Lockwood B.L., Sanders J.G., Somero G.N. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. Journal of Experimental Biology, 2010; 213(Pt 20): 3548-3558.
https://doi.org/10.1242/jeb.046094
PMid:20889835

30. Lowry O.H., Rosebrough H.J., Farr A.L., Randall R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem, 1951; 193: 265-275.

31. Lushchak V.I., Bagnyukova T.V. Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp. Biochem. Physiol, 2006; 143 C(1): 36-41.
https://doi.org/10.1016/j.cbpc.2005.11.018
PMid:16426898

32. Ohkawa H., Onishi N., Yagi K. Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 1979; 95(2):351 358.
https://doi.org/10.1016/0003-2697(79)90738-3

33. Olsvik P.A., Heier L.S., Rosseland B.O. et al. Effects of combined gamma-irradiation and metal (Al+Cd) exposures in Atlantic salmon (Salmo salar L.). Journal of Environmental Radioactivity, 2010; 101(3): 230-236.
https://doi.org/10.1016/j.jenvrad.2009.11.004
PMid:19969403

34. Piano A., Valbonesi P., Fabbri E. Expression of cytoprotective proteins, heat shock protein 70 and metallothioneins, in tissues of Ostrea edulis exposed to heat and heavy metals. Cell Stress Chaperones, 2004; 9(2): 134-142.
https://doi.org/10.1379/483.1
PMid:15497500 PMCid:PMC1065293

35. Pourang N., Richardson C.A., Mortazavi M.S. Heavy metal concentrations in the soft tissues of swan mussel (Anodonta cygnea) and surficial sediments from Anzali wetland. Environmental Monitoring Assess, 2010; 163(1-4): 195-213.
https://doi.org/10.1007/s10661-009-0827-7
PMid:19266295

36. Riffeser M., Hock B. Vitellogenin levels in mussel hemolymph a suitable biomarker for the exposure to estrogens? Comp. Biochem. Physiol, 2002; 132(1):75 84.
https://doi.org/10.1016/S1532-0456(02)00048-0

37. Romero A., Estévez-Calvar N., Dios S. et al. New insights into the apoptotic process in mollusks: characterization of caspase genes in Mytilus galloprovincialis. PLoS ONE, 2011; 6(2): e17003.
https://doi.org/10.1371/journal.pone.0017003
PMid:21347300 PMCid:PMC3037946

38. Salánki J., Farkas V., Kamardina T., Rózsa K.S. Molluscs in biological monitoring of water quality. Toxicology Letters, 2003; 140-141: 403-410.
https://doi.org/10.1016/S0378-4274(03)00036-5

39. Sapoznikova Y., Zubcov N., Hungerford S. et al. Evaluation of pesticides and metals in fish of the Dniester River, Moldova. Chemosphere, 2005; 60(2): 196-205.
https://doi.org/10.1016/j.chemosphere.2004.12.061
PMid:15914239

40. Sheehan D., Power A. Effects of seasonality on xenobiotic and antioxidant defence mechanisms of bivalve mollusks. Comp. Biochem. Physiol, 1999; 123 C(3): 193-199.
https://doi.org/10.1016/S0742-8413(99)00033-X

41. Silayeva A.A., Protasov A.A. Composition and structure of zoobenthos of Stir river in the zone of Rovenska AES and the evaluation of its effect on the bottom groups. Hydrobiologia, 2005; 41: 25-45.
https://doi.org/10.1615/HydrobJ.v41.i6.20

42. Sokolova I.M. Energy-Limited Tolerance to Stress as a Conceptual Framework to Integrate the Effects of Multiple Stressors. Integr. Comp. Biol, 2013; 53(4): 597-608.
https://doi.org/10.1093/icb/ict028
PMid:23615362

43. Stolyar O.B., Loumbourdis N.S., Falfushinska H.I., Romanchuk L.D. Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Archives of Environmental Contamination and Toxicology, 2008; 54(1): 107-113.
https://doi.org/10.1007/s00244-007-9012-6
PMid:17680172

44. Verlecar X.N., Jena K.B., Chainy G.B.N. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. J. Biol. Chem, 2007; 167(3): 219-226.
https://doi.org/10.1016/j.cbi.2007.01.018
PMid:17418111

45. Viarengo A., Lowe D., Bolognesi C. et al. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp. Biochem. Physiol, 2007; 146(3): 281-300.
https://doi.org/10.1016/j.cbpc.2007.04.011
PMid:17560835

46. Viarengo A., Ponzano E., Dondero F., Fabbri R. A simple spectrophotometric method for me-tallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic Molluscs. Marine Environmental Research, 1997; 44(1): 69-84.
https://doi.org/10.1016/S0141-1136(96)00103-1

47. Vidal M.-L., Bassères A., Narbonne J.-Fr. Influence of temperature, pH, oxygenation, water-type and substrate on biomarker responses in the freshwater clam Corbicula fluminea (Müller). Comp. Biochem. Physiol, 2002; 132 C(1): 93-104.
https://doi.org/10.1016/S1532-0456(02)00051-0

48. Vlahogianni T., Dassenakis M., Scoullos M.J., Valavanidis A. Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals' pollution in coastal areas from the Saronikos Gulf of Greece. Marine Pollution Bulletin, 2007; 54(9): 1361-1371.
https://doi.org/10.1016/j.marpolbul.2007.05.018
PMid:17624376

49. Wang J., Wei Y., Li X. et al. The identification of heat shock protein genes in goldfish (Carassius auratus) and their expression in a complex environment in Gaobeidian Lake, Beijing, China. Comp. Biochem. Physiol, 2007; 145 C(3): 350-362.
https://doi.org/10.1016/j.cbpc.2007.01.018
PMid:17368997

50. Wu R.S.S., Lam P.K.S. Glucose-6-phosphate dehydrogenase and lactate dehydrogenase in the green-lipped mussel (Perna viridis): Possible biomarkers for hypoxia in the marine environment. Water Research, 1997; 31(11): 2797-2801.
https://doi.org/10.1016/S0043-1354(97)00116-4


Refbacks

  • There are currently no refbacks.


Copyright (c) 2014 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.