EFFECT OF A NOVEL THIAZOLE DERIVATIVE AND COMPLEX WITH POLYMERIC CARRIERS ON THE PROCESSES OF LIPID PEROXIDATION IN LYMPHOMA CELLS
DOI: http://dx.doi.org/10.30970/sbi.1602.682
Abstract
Background. Many types of tumors are sensitive to changes in prooxidant-antioxidant balance. Thus, further studies on reactive oxygen species inducing antitumor drugs that generate oxidative stress-dependent cytotoxic effects are promising. Our previous works showed that thiazole derivatives in combination with polymeric carriers have a pronounced cytotoxic effect on tumor, while not being cytotoxic against pseudo-normal cells in vitro. It was found that thiazole derivatives in complex with PEG-based polymeric carriers affected the antioxidant system of lymphoma cells in vitro. The aim of this work was to study the in vitro effect of the complex of thiazole derivative N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide (BF1) in combination with polymeric carriers poly(VEP-co-GMA)-graft-mPEG (Th1), poly(PEGMA) (Th3) and poly(PEGMA-co-DMM) (Th5) on the level of lipid peroxidation products in NK/Ly cells.
Materials and Methods. The experiments were conducted on white wild-type male mice with a grafted NK/Ly lymphoma. Ascites tumor cells were inoculated into mice intraperitoneally. Abdominal drainage with ascites of anesthetized mice was performed with a sterile syringe on the 7th–10th days after inoculation. Investigated compounds BF1, polymeric carriers Th1, Th3, Th5 and combination of BF1 + Th1 (Th2), BF1 + Th3 (Th4) and BF1 + Th5 (Th6) at a final concentration of 10 μM were added to the lymphoma samples and incubated for 10 minutes. The level of lipid peroxidation products, such as lipid hydroperoxides and thiobarbituric acid-positive products) were determined according to the techniques described below.
Results. All applied complexes based on thiazole derivative BF1 and PEG-based polymeric carriers at a concentration of 10 μM increased the activity of lipid hydroperoxides in the lymphoma cells by 29–36% compared to control. Complexes Th2 and Th6 increased the significance of BF1 influence on lymphoma cells from P <0.05 to P <0.01. Among all of the studied complexes, Th4 and Th6 significantly increased the level of TBA-positive products, while Th2 and BF1 did not change the content of the secondary products of lipid peroxidation. None of the unconjugated polymeric carriers affected the level of lipid peroxidation products.
Conclusions. Thus, based on the results of this work, thiazole derivative BF1 in complex with polymeric carriers increases the level of primary and secondary products of lipid peroxidation in lymphoma cells. Polymeric carriers enhanced the effect of thiazole derivative on the studied parameters, so complexes of thiazole derivatives and PEG-containing polymeric carriers should be taken into consideration and further investigated as potential antitumor agents.
Keywords
Full Text:
PDFReferences
Aggarwal, V., Tuli, H. S., Varol, A., Thakral, F., Yerer, M. B., Sak, K., Varol, M., Jain, A., Khan, M. A., & Sethi, G. (2019). Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules, 9(11), 735. doi:10.3390/biom9110735 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., & Jadidi-Niaragh, F. (2017). Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 190, 64-83. doi:10.1016/j.imlet.2017.07.015 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Baraldi, P. G., Saponaro, G., Aghazadeh Tabrizi, M., Baraldi, S., Romagnoli, R., Moorman, A. R., Varani, K., Borea, P. A., & Preti, D. (2012). Pyrrolo- and pyrazolo-[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as adenosine receptor antagonists. Bioorganic & Medicinal Chemistry, 20(2), 1046-1059. doi:10.1016/j.bmc.2011.11.037 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bayram, B., Ozgur, A., Tutar, L., & Tutar, Y. (2018). Tumor targeting of polymeric nanoparticles conjugated with peptides, saccharides, and small molecules for anticancer drugs. Current Pharmaceutical Design, 23(35). doi:10.2174/1381612823666170608081735 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chern, Y.-J., & T. Tai, I. (2020). Adaptive response of resistant cancer cells to chemotherapy. Cancer Biology and Medicine, 17(4), 842-863. doi:10.20892/j.issn.2095-3941.2020.0005 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Cubillos-Ruiz, J. R., Bettigole, S. E., & Glimcher, L. H. (2017). Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell, 168(4), 692-706. doi:10.1016/j.cell.2016.12.004 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd, & Stockwell, B. R. (2012). Ferroptosis: an iron-dependent rorm of nonapoptotic cell death. Cell, 149(5), 1060-1072. doi:10.1016/j.cell.2012.03.042 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Finiuk, N. S., Hreniuh, V. P., Ostapiuk, Y. V., Matiychuk, V. S., Frolov, D. A., Obushak, M. D., Stoika R. S., & Babsky, A. M. (2017). Antineoplastic activity of novel thiazole derivatives. Biopolymers and Cell, 33(2), 135-146. doi:10.7124/bc.00094b Crossref ● Google Scholar | ||||
| ||||
Finiuk, N. S., Popovych, M. V., Shalai, Y. R., Mandzynets', S. M., Hreniuh, V. P., Ostapiuk, Y. V., Obushak, M. D., Mitina, N. O., Zaichenko, O. S., Stoika, R. S., & Babsky, A. M. (2021). Antineoplastic activity in vitro of 2-amino-5-benzylthiasol derivative in the complex with nanoscale polymeric carriers. Cytology and Genetics, 55(1), 19-27. doi:10.3103/s0095452721010084 Crossref ● Google Scholar | ||||
| ||||
Khan, N., Afaq, F., & Mukhtar, H. (2008). Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxidants & Redox Signaling, 10(3), 475-510. doi:10.1089/ars.2007.1740 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/s0021- 9258(19)52451-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mitina, N. Y., Riabtseva, A. O., Garamus, V. M., Lesyk, R. B., Volyanyuk, K. A., Izhyk, O. M., & Zaichenko, O. S. (2020). Morphology of the micelles formed by a comb-like PEG-containing copolymer loaded with antitumor substances with different water solubilities. Ukrainian Journal of Physics, 65(8), 670. doi:10.15407/ujpe65.8.670 Crossref ● Google Scholar | ||||
| ||||
Myronchyk, V. V. (1984). Sposob opredeleniya soderzhaniya gidroperekisey lipidov v biologicheskih tkanyah [Method for determination of lipid hydroperoxides in biological tissues]. Patent SU, (1084681). (In Russian) Google Scholar | ||||
| ||||
Narang, A. S., & Desai, D. S. (2009). Anticancer Drug Development. In: Y. Lu, R. I. Mahato (Eds), Pharmaceutical Perspectives of Cancer Therapeutics (pp. 49-92). Springer. doi:10.1007/978-1-4419-0131-6_2 Crossref ● Google Scholar | ||||
| ||||
Paliwal, S., Sundaram, J., & Mitragotri, S. (2005). Induction of cancer-specific cytotoxicity towards human prostate and skin cells using quercetin and ultrasound. British Journal of Cancer, 92(3), 499-502. doi:10.1038/sj.bjc.6602364 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Parveen, S., Arjmand, F., & Tabassum, S. (2019). Clinical developments of antitumor polymer therapeutics. RSC Advances, 9(43), 24699-24721. doi:10.1039/c9ra04358f Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., & Migliaccio, A. (2020). ROS in cancer therapy: the bright side of the moon. Experimental & Molecular Medicine, 52(2), 192-203. doi:10.1038/s12276-020-0384-2 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Popovych, M. V., Shalai, Ya. R., Hreniukh, V. P., Kulachkovskyy, O. R., Mandzynets, S. M., Mitina, N. O., Zaichenko, O. S., & Babsky, A. M. (2021). Effect of thiazole derivative complexed with nanoscale polymeric carriers on cellular ultrastructure of murine lymphoma cells in vivo. Studia Biologica, 15(2), 15-24. doi:10.30970/sbi.1502.653 Crossref ● Google Scholar | ||||
| ||||
Popovych, M. V., Shalai, Ya. R., Mandzynets, S. M., Mitina, N. E., Zaichenko, O. S. (2021). Effect of a novel thiazole derivative and its complex with polymeric carriers on the activity of antioxidant enzymes in murine lymphoma cells. Studia Biologica, 15(4), 37-48. doi:10.30970/sbi.1504.673 Crossref ● Google Scholar | ||||
| ||||
Shalai, Ya. R., Popovych, M. V., Kulachkovskyy, O. R., Hreniukh, V. P., Mandzynets, S. M., Finiuk, N. S., & Babsky, A. M. (2019). Effect of novel 2-amino-5-benzylthiazole derivative on cellular ultrastructure and activity of antioxidant system in murine lymphoma cells. Studia Biologica, 13(1), 51-60. doi:10.30970/sbi.1301.591 Crossref ● Google Scholar | ||||
| ||||
Shalai, Ya. R., Popovych, M. V., Mandzynets, S. M., Hreniukh, V. P., Finiuk, N. S., Babsky, A. M. (2020). Prooxidant and antioxidant processes in lymphoma cells under the action of pyrazolopyrimidine derivative. Studia Biologica, 14(4), 15-22. doi:10.30970/sbi.1404.635 Crossref ● Google Scholar | ||||
| ||||
Shalai, Ya. R., Mandzynets, S. M., Hreniukh, V. P., Finiuk, N. S., & Babsky, A. M. (2018). Vilnoradykalni protsesy v klitynakh limfomy NK/Ly i hepatotsytakh za dii novosyntezovanoho pokhidnoho tiazolu [Free-radical processes in NK/Ly lymphoma cells and hepatocytes under the effect of thiazole derivative]. Bulletin of Problems Biology and Medicine, 1.2(143), 234. doi:10.29254/2077-4214-2018-1-2-143-234-238 (In Ukranian) Crossref ● Google Scholar | ||||
| ||||
Timirbulatov, R. A., & Seleznev, E. I. (1981). Metod povysheniia intensivnosti svobonoradikal'nogo okisleniia lipidsoderzhashchikh komponentov krovi i ego diagnosticheskoe znachenie [Method for increasing the intensity of free radical oxidation of lipid-containing components of the blood and its diagnostic significance]. Laboratornoe delo, (4), 209-211. (In Russian) PubMed ● Google Scholar | ||||
| ||||
Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., & Souto, E. B. (2020). Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules (Basel, Switzerland), 25(16), 3731. doi:10.3390/molecules25163731 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 M. V. Ilkiv, Ya. R. Shalai, N. E. Mitina, A. S. Zaichenko, A. M. Babsky
This work is licensed under a Creative Commons Attribution 4.0 International License.