REDUCTION IN VIABILITY OF HUMAN CERVIX CARCINOMA HeLa CELLS UNDER TRANSFER OF p21 GENE WITH BLOCK POLYMERIC DIMETHYLAMINOETHYL METHACRYLATE-BASED CARRIER

N. S. Finiuk, N. E. Mitina, O. Yu. Klyuchivska, I. Y. Kril, A. S. Zaichenko, R. S. Stoika


DOI: http://dx.doi.org/10.30970/sbi.1602.681

Abstract


Background. Various cationic polymers have been proposed for use as carriers of genetic materials in biotechnology and biomedicine. The poly(2-dimethylamino)ethyl-methacrylate (poly(DMAEMA)) demonstrated high transfection efficiency and low cytotoxicity when used as a gene delivery system. The aim of the present study was to evaluate the ability of poly(DMAEMA)-block-poly(N-vinylpyrrolidone)-co-(butyl-acrylate)-co-2-aminoethyl methacrylate carrier, BP83-1, to deliver p21 gene into human cervix carcinoma HeLa cells and to define its effects on the viability of tumor cells in vitro.
Methods. Transfection assay, Western-blot analysis, MTT test, DNA comet analysis in alkaline conditions, diphenylamine assay for DNA fragmentation (Barton’s assay), FACS analysis of cell cycling.
Results. The BP83-1 polymer effectively transferred pFlag-P21WT plasmid DNA containing p21 gene into human cervix carcinoma HeLa cells. The level of BP83-1-facili­tated delivery of p21 into HeLa cells was significantly higher than the level achieved with linear polyethyleneimine (PEI). A significant (26.1 % and 40.1 %) reduction in the viability of HeLa cells transfected with pDNA/BP83-1 and pDNA/PEI polyplexes was detected compared to non-transfected cells. The reverse dependence between the elevated amount of p21 and the reduced amount of Cdk2 was observed in the transfected HeLa cells. The number of cells in G1 phase of the cell cycle in HeLa cells increased from 54.9 % to 65.8 % and to 64.9 % after their transfection with pFlag-P21WT/BP83-1 and pFlag-P21WT/PEI polyplexes, correspondingly. Besides, an increased number of single-strand breaks in DNA and content of the fragmented DNA was detected in HeLa cells transfected with pDNA/BP83-1 and pDNA/PEI polyplexes. The DNA dama­ging effects of the BP83-1 carrier and pDNA/BP83-1 polyplex were less pronounced in treated HeLa cells, compared with such effects of PEI and pDNA/PEI polyplex.
Conclusion. An effective transfer of p21 gene with BP83-1 carrier into human cervix carcinoma HeLa cells was demonstrated. The overexpression of p21 gene led to inhibition of viability of HeLa cells, DNA damage, and blocking of cell cycle progression from G1 phase to S phase via a reduction of the amount of cyclin-dependent kinase 2 (Cdk2) and accumulation of cells in G1 phase.


Keywords


poly(2-dimethylamino)ethyl-methacrylate, polymeric carrier, gene transfer, p21, cytotoxic action, cell cycle, DNA damage

Full Text:

PDF

References


Al Bitar, & Gali-Muhtasib. (2019). The role of the cyclin dependent kinase inhibitor p21cip1/waf1 in targeting cancer: Molecular mechanisms and novel therapeutics. Cancers, 11(10), 1475. doi:10.3390/cancers11101475
CrossrefPubMedPMCGoogle Scholar

Arora, S., & Tandon, S. (2015). DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells. Homeopathy, 104(1), 36-47. doi:10.1016/j.homp.2014.10.001
CrossrefPubMedGoogle Scholar

Chen, C.-K., Huang, P.-K., Law, W.-C., Chu, C.-H., Chen, N.-T., & Lo, L.-W. (2020). Biodegradable polymers for gene-delivery applications. International Journal of Nanomedicine, 15, 2131-2150. doi:10.2147/ijn.s222419
CrossrefPubMedPMCGoogle Scholar

Cheng, H., Wu, Z., Wu, C., Wang, X., Liow, S. S., Li, Z., & Wu, Y.-L. (2018). Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells. Materials Science and Engineering: C, 83, 210-217. doi:10.1016/j.msec.2017.08.075
CrossrefPubMedGoogle Scholar

Cohen, P. A., Jhingran, A., Oaknin, A., & Denny, L. (2019). Cervical cancer. The Lancet, 393(10167), 169-182. doi:10.1016/s0140-6736(18)32470-x
CrossrefPubMedGoogle Scholar

Filyak, Y., Finiuk, N., Mitina, N., Bilyk, O., Titorenko, V., Hrydzhuk, O., Zaichenko, A., & Stoika, R. (2013). A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers. BioTechniques, 54(1), 35-43. doi:10.2144/000113980
CrossrefPubMedGoogle Scholar

Finiuk, N. S., Klyuchivska, O. Y., Ivasechko, I. I., Mitina, N. E., Ostapiuk, Y. V., Obushak, M. D., Zaichenko, O. S., Babsky, A. M., & Stoika, R. S. (2021a). Effect of a novel thiazole derivative and its complex with a polymeric carrier on stability of DNA in human breast cancer cells. The Ukrainian Biochemical Journal, 93(2), 39-51. doi:10.15407/ubj93.02.039
CrossrefGoogle Scholar

Finiuk, N. S., Klyuchivska, O. Y., Kuznietsova, H. M., Vashchuk, S. P., Rybalchenko, V. K., & Stoika, R. S. (2020). Inhibitor of protein kinases 1-(4-chlorobenzyl)-3-chloro-4-(3-trifluoromethylphenylamino)-1Н-pyrrole-2,5-dione induces DNA damage and apoptosis in human colon carcinoma cells. Studia Biologica, 14(4), 3-14. doi:10.30970/sbi.1404.636
CrossrefGoogle Scholar

Finiuk, N. S., Mitina, N. E., Lobachevska, O. V., Zaichenko, A. S., Stoika, R. S. (2021b). Application of polymeric dimethylaminoethyl methacrylate based carriers of plasmid DNA for genetic transformation of Ceratodon purpureus moss. Studia Biologica, 15(3), 29-40. doi:10.30970/sbi.1503.662
CrossrefGoogle Scholar

Finiuk, N., Buziashvili, A., Burlaka, O., Zaichenko, A., Mitina, N., Miagkota, O., Lobachevska, O., Stoika, R., Blume, Ya., Yemets, A. (2017). Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells. Plant Cell, Tissue and Organ Culture (PCTOC), 131(1), 27-39. doi:10.1007/s11240-017-1259-7
CrossrefGoogle Scholar

Finiuk, N., Kryshchyshyn-Dylevych, A., Holota, S., Klyuchivska, O., Kozytskiy, A., Karpenko, O., Manko, N., Ivasechko, I., Stoika, R., & Lesyk, R. (2022). Novel hybrid pyrrolidinedione-thiazolidinones as potential anticancer agents: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 238, 114422. doi:10.1016/j.ejmech.2022.114422
CrossrefPubMedGoogle Scholar

García-Fernández, R. A., García-Palencia, P., Sánchez, M. Á., Gil-Gómez, G., Sánchez, B., Rollán, E., Martín-Caballero, J., & Flores, J. M. (2011). Combined loss of p21waf1/cip1 and p27kip1 enhances tumorigenesis in mice. Laboratory Investigation, 91(11), 1634-1642. doi:10.1038/labinvest.2011.133
CrossrefPubMedGoogle Scholar

Guler Gokce, Z., Birol, S. Z., Mitina, N., Harhay, K., Finiuk, N., Glasunova, V., Stoika, R., Ercelen, E., & Zaichenko, A. (2020). Novel amphiphilic block-copolymer forming stable micelles and interpolyelectrolyte complexes with DNA for efficient gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(8), 554-573. doi:10.1080/00914037.2020.1740988
CrossrefGoogle Scholar

Hemminki, K., Kanerva, A., Försti, A., & Hemminki, A. (2022). Cervical, vaginal and vulvar cancer incidence and survival trends in Denmark, Finland, Norway and Sweden with implications to treatment. BMC Cancer, 22(1). doi:10.1186/s12885-022-09582-5
CrossrefPubMedPMCGoogle Scholar

Ibnat, N., Kamaruzman, N. I., Ashaie, M., & Chowdhury, E. H. (2019). Transfection with p21 and p53 tumor suppressor plasmids suppressed breast tumor growth in syngeneic mouse model. Gene. doi:10.1016/j.gene.2019.02.082
CrossrefPubMedGoogle Scholar

Jiang, D., Wang, X., Liu, X., & Li, F. (2013). Gene delivery of cyclin-dependent kinase inhibitors p21Waf1 and p27Kip1 suppresses proliferation of MCF-7 breast cancer cells in vitro. Breast Cancer, 21(5), 614-623. doi:10.1007/s12282-012-0438-y
CrossrefPubMedGoogle Scholar

Khanna, A. K., & Hosenpud, J. D. (2000). In vitro and in vivo transfection of p21 gene enhances cyclosporin A-mediated inhibition of lymphocyte proliferation. The Journal of Immunology, 165(4), 1882-1888. doi:10.4049/jimmunol.165.4.1882
CrossrefPubMedGoogle Scholar

Kоbylinska, L. I., Boiko, N. M., Panchuk, R. R., Grytsyna, I. I., Klyuchivska, O. Y., Biletska, L. P., Lesyk, R. B., Zіmenkovsky, B. S., & Stoika, R. S. (2016). Putative anticancer potential of novel 4-thiazolidinone derivatives: cytotoxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats. Croatian Medical Journal, 57(2), 151-163. doi:10.3325/cmj.2016.57.151
CrossrefPubMedPMCGoogle Scholar

Li, Z., & Loh, X. J. (2016). Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. WIREs Nanomedicine and Nanobiotechnology, 9(3). doi:10.1002/wnan.1429
CrossrefPubMedGoogle Scholar

Liao, W., McNutt, M. A., & Zhu, W. G. (2009). The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods, 48(1), 46-53. doi:10.1016/j.ymeth.2009.02.016
CrossrefPubMedGoogle Scholar

Lin, C. K., Liu, S. T., Chang, C. C., & Huang, S. M. (2019). Regulatory mechanisms of fluvastatin and lovastatin for the p21 induction in human cervical cancer HeLa cells. PloS One, 14(4), e0214408. doi:10.1371/journal.pone.0214408
CrossrefPubMedPMCGoogle Scholar

Liu, X., Tian, P.-K., Ju, D.-W., Zhang, M.-H., Yao, M., Cao, X.-T., & Gu, J.-R. (2003). Systemic genetic transfer of p21WAF−1 and GM-CSF utilizing of a novel oligopeptide-based EGF receptor targeting polyplex. Cancer Gene Therapy, 10(7), 529-539. doi:10.1038/sj.cgt.7700596
CrossrefPubMedGoogle Scholar

Mahmood, T., & Yang, P. C. (2012). Western blot: technique, theory, and trouble shooting. North American Journal of Medical Sciences, 4(9), 429-434. doi:10.4103/1947-2714.100998
CrossrefPubMedPMCGoogle Scholar

Paiuk, O., Mitina, N., Slouf, M., Pavlova, E., Finiuk, N., Kinash, N., Karkhut, A., Manko, N., Gromovoy, T., Hevus, O., Shermolovich, Y., Stoika, R., & Zaichenko, A. (2019). Fluorine-containing block/branched polyamphiphiles forming bioinspired complexes with biopolymers. Colloids and surfaces. B, Biointerfaces, 174, 393-400. doi:10.1016/j.colsurfb.2018.11.047
CrossrefPubMedGoogle Scholar

Pedroza-Torres, A., Campos-Parra, A. D., Millan-Catalan, O., Loissell-Baltazar, Y. A., Zamudio-Meza, H., Cantú de León, D., Montalvo-Esquivel, G., Isla-Ortiz, D., Herrera, L. A., Ángeles-Zaragoza, Ó., Robelo-Romero, G., Herrera-Gómez, Á., & Pérez-Plasencia, C. (2018). MicroRNA-125 modulates radioresistance through targeting p21 in cervical cancer. Oncology Reports, 39(3), 1532-1540. doi:10.3892/or.2018.6219
CrossrefPubMedGoogle Scholar

Richter, F., Leer, K., Martin, L., Mapfumo, P., Solomun, J. I., Kuchenbrod, M. T., Hoeppener, S., Brendel, J. C., & Traeger, A. (2021). The impact of anionic polymers on gene delivery: how composition and assembly help evading the toxicity-efficiency dilemma. Journal of Nanobiotechnology, 19(1), 292. doi:10.1186/s12951-021-00994-2
CrossrefPubMedPMCGoogle Scholar

Salameh, J. W., Zhou, L., Ward, S. M., Santa Chalarca, C. F., Emrick, T., & Figueiredo, M. L. (2019). Polymer-mediated gene therapy: Recent advances and merging of delivery techniques. WIREs Nanomedicine and Nanobiotechnology, 12(2). doi:10.1002/wnan.1598
CrossrefPubMedPMCGoogle Scholar

Santana-Armas, M. L., & Tros de Ilarduya, C. (2021). Strategies for cancer gene-delivery improvement by non-viral vectors. International Journal of Pharmaceutics, 596, 120291. doi:10.1016/j.ijpharm.2021.120291
CrossrefPubMedGoogle Scholar

Shamloo, B., & Usluer, S. (2019). p21 in cancer research. Cancers, 11(8), 1178. doi:10.3390/cancers11081178
CrossrefPubMedPMCGoogle Scholar

Zheng, Y., Wang, X., Qiu, F., & Yin, L. (2018). Amphiphilic polymer to improve polyplex stability for enhanced transfection efficiency. Polymer Bulletin, 76(5), 2471-2479. doi:10.1007/s00289-018-2506-8
CrossrefGoogle Scholar

Zhou, B. P., Liao, Y., Xia, W., Spohn, B., Lee, M.-H., & Hung, M.-C. (2001). Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biology, 3(3), 245-252. doi:10.1038/35060032
CrossrefPubMed ● <a title="https://scholar.google.com/scholar?hl=uk&as_sdt=0%2C5&q=Zhou%2C+B.+P.%2C+Liao%2C+Y.%2C+Xia%2C+W.%2C+Spohn%2C+B.%2C+Lee%2C+M.-H.%2C+%26+Hung%2C+M.-C.+%282001%29.+Cytoplasmic+localization+of+p21Cip1%2FWAF1+by+Akt-induced+phosphorylation+in+HER-2%2Fneu-overexpressing+cells.+Nature+Cell+Biology&btnG=" href="https://scholar.google.com/scholar?hl=uk&as_sdt=0%2C5&q=Zhou%2C+B.+P.%2C+Liao%2C+Y.%2C+Xia%2C+W.%2C+Spohn%2C+B.%2C+Lee%2C+M.-H.%


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 N. S. Finiuk, N. E. Mitina, O. Yu. Klyuchivska, I. Y. Kril, A. S. Zaichenko, R. S. Stoika

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.