REDUCTION IN VIABILITY OF HUMAN CERVIX CARCINOMA HeLa CELLS UNDER TRANSFER OF p21 GENE WITH BLOCK POLYMERIC DIMETHYLAMINOETHYL METHACRYLATE-BASED CARRIER
DOI: http://dx.doi.org/10.30970/sbi.1602.681
Abstract
Background. Various cationic polymers have been proposed for use as carriers of genetic materials in biotechnology and biomedicine. The poly(2-dimethylamino)ethyl-methacrylate (poly(DMAEMA)) demonstrated high transfection efficiency and low cytotoxicity when used as a gene delivery system. The aim of the present study was to evaluate the ability of poly(DMAEMA)-block-poly(N-vinylpyrrolidone)-co-(butyl-acrylate)-co-2-aminoethyl methacrylate carrier, BP83-1, to deliver p21 gene into human cervix carcinoma HeLa cells and to define its effects on the viability of tumor cells in vitro.
Methods. Transfection assay, Western-blot analysis, MTT test, DNA comet analysis in alkaline conditions, diphenylamine assay for DNA fragmentation (Barton’s assay), FACS analysis of cell cycling.
Results. The BP83-1 polymer effectively transferred pFlag-P21WT plasmid DNA containing p21 gene into human cervix carcinoma HeLa cells. The level of BP83-1-facilitated delivery of p21 into HeLa cells was significantly higher than the level achieved with linear polyethyleneimine (PEI). A significant (26.1 % and 40.1 %) reduction in the viability of HeLa cells transfected with pDNA/BP83-1 and pDNA/PEI polyplexes was detected compared to non-transfected cells. The reverse dependence between the elevated amount of p21 and the reduced amount of Cdk2 was observed in the transfected HeLa cells. The number of cells in G1 phase of the cell cycle in HeLa cells increased from 54.9 % to 65.8 % and to 64.9 % after their transfection with pFlag-P21WT/BP83-1 and pFlag-P21WT/PEI polyplexes, correspondingly. Besides, an increased number of single-strand breaks in DNA and content of the fragmented DNA was detected in HeLa cells transfected with pDNA/BP83-1 and pDNA/PEI polyplexes. The DNA damaging effects of the BP83-1 carrier and pDNA/BP83-1 polyplex were less pronounced in treated HeLa cells, compared with such effects of PEI and pDNA/PEI polyplex.
Conclusion. An effective transfer of p21 gene with BP83-1 carrier into human cervix carcinoma HeLa cells was demonstrated. The overexpression of p21 gene led to inhibition of viability of HeLa cells, DNA damage, and blocking of cell cycle progression from G1 phase to S phase via a reduction of the amount of cyclin-dependent kinase 2 (Cdk2) and accumulation of cells in G1 phase.
Keywords
Full Text:
PDFReferences
Al Bitar, & Gali-Muhtasib. (2019). The role of the cyclin dependent kinase inhibitor p21cip1/waf1 in targeting cancer: Molecular mechanisms and novel therapeutics. Cancers, 11(10), 1475. doi:10.3390/cancers11101475 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Arora, S., & Tandon, S. (2015). DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells. Homeopathy, 104(1), 36-47. doi:10.1016/j.homp.2014.10.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chen, C.-K., Huang, P.-K., Law, W.-C., Chu, C.-H., Chen, N.-T., & Lo, L.-W. (2020). Biodegradable polymers for gene-delivery applications. International Journal of Nanomedicine, 15, 2131-2150. doi:10.2147/ijn.s222419 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Cheng, H., Wu, Z., Wu, C., Wang, X., Liow, S. S., Li, Z., & Wu, Y.-L. (2018). Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells. Materials Science and Engineering: C, 83, 210-217. doi:10.1016/j.msec.2017.08.075 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cohen, P. A., Jhingran, A., Oaknin, A., & Denny, L. (2019). Cervical cancer. The Lancet, 393(10167), 169-182. doi:10.1016/s0140-6736(18)32470-x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Filyak, Y., Finiuk, N., Mitina, N., Bilyk, O., Titorenko, V., Hrydzhuk, O., Zaichenko, A., & Stoika, R. (2013). A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers. BioTechniques, 54(1), 35-43. doi:10.2144/000113980 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Finiuk, N. S., Klyuchivska, O. Y., Ivasechko, I. I., Mitina, N. E., Ostapiuk, Y. V., Obushak, M. D., Zaichenko, O. S., Babsky, A. M., & Stoika, R. S. (2021a). Effect of a novel thiazole derivative and its complex with a polymeric carrier on stability of DNA in human breast cancer cells. The Ukrainian Biochemical Journal, 93(2), 39-51. doi:10.15407/ubj93.02.039 Crossref ● Google Scholar | ||||
| ||||
Finiuk, N. S., Klyuchivska, O. Y., Kuznietsova, H. M., Vashchuk, S. P., Rybalchenko, V. K., & Stoika, R. S. (2020). Inhibitor of protein kinases 1-(4-chlorobenzyl)-3-chloro-4-(3-trifluoromethylphenylamino)-1Н-pyrrole-2,5-dione induces DNA damage and apoptosis in human colon carcinoma cells. Studia Biologica, 14(4), 3-14. doi:10.30970/sbi.1404.636 Crossref ● Google Scholar | ||||
| ||||
Finiuk, N. S., Mitina, N. E., Lobachevska, O. V., Zaichenko, A. S., Stoika, R. S. (2021b). Application of polymeric dimethylaminoethyl methacrylate based carriers of plasmid DNA for genetic transformation of Ceratodon purpureus moss. Studia Biologica, 15(3), 29-40. doi:10.30970/sbi.1503.662 Crossref ● Google Scholar | ||||
| ||||
Finiuk, N., Buziashvili, A., Burlaka, O., Zaichenko, A., Mitina, N., Miagkota, O., Lobachevska, O., Stoika, R., Blume, Ya., Yemets, A. (2017). Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells. Plant Cell, Tissue and Organ Culture (PCTOC), 131(1), 27-39. doi:10.1007/s11240-017-1259-7 Crossref ● Google Scholar | ||||
| ||||
Finiuk, N., Kryshchyshyn-Dylevych, A., Holota, S., Klyuchivska, O., Kozytskiy, A., Karpenko, O., Manko, N., Ivasechko, I., Stoika, R., & Lesyk, R. (2022). Novel hybrid pyrrolidinedione-thiazolidinones as potential anticancer agents: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 238, 114422. doi:10.1016/j.ejmech.2022.114422 Crossref ● PubMed ● Google Scholar | ||||
| ||||
García-Fernández, R. A., García-Palencia, P., Sánchez, M. Á., Gil-Gómez, G., Sánchez, B., Rollán, E., Martín-Caballero, J., & Flores, J. M. (2011). Combined loss of p21waf1/cip1 and p27kip1 enhances tumorigenesis in mice. Laboratory Investigation, 91(11), 1634-1642. doi:10.1038/labinvest.2011.133 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Guler Gokce, Z., Birol, S. Z., Mitina, N., Harhay, K., Finiuk, N., Glasunova, V., Stoika, R., Ercelen, E., & Zaichenko, A. (2020). Novel amphiphilic block-copolymer forming stable micelles and interpolyelectrolyte complexes with DNA for efficient gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(8), 554-573. doi:10.1080/00914037.2020.1740988 Crossref ● Google Scholar | ||||
| ||||
Hemminki, K., Kanerva, A., Försti, A., & Hemminki, A. (2022). Cervical, vaginal and vulvar cancer incidence and survival trends in Denmark, Finland, Norway and Sweden with implications to treatment. BMC Cancer, 22(1). doi:10.1186/s12885-022-09582-5 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ibnat, N., Kamaruzman, N. I., Ashaie, M., & Chowdhury, E. H. (2019). Transfection with p21 and p53 tumor suppressor plasmids suppressed breast tumor growth in syngeneic mouse model. Gene. doi:10.1016/j.gene.2019.02.082 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Jiang, D., Wang, X., Liu, X., & Li, F. (2013). Gene delivery of cyclin-dependent kinase inhibitors p21Waf1 and p27Kip1 suppresses proliferation of MCF-7 breast cancer cells in vitro. Breast Cancer, 21(5), 614-623. doi:10.1007/s12282-012-0438-y Crossref ● PubMed ● Google Scholar | ||||
| ||||
Khanna, A. K., & Hosenpud, J. D. (2000). In vitro and in vivo transfection of p21 gene enhances cyclosporin A-mediated inhibition of lymphocyte proliferation. The Journal of Immunology, 165(4), 1882-1888. doi:10.4049/jimmunol.165.4.1882 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kоbylinska, L. I., Boiko, N. M., Panchuk, R. R., Grytsyna, I. I., Klyuchivska, O. Y., Biletska, L. P., Lesyk, R. B., Zіmenkovsky, B. S., & Stoika, R. S. (2016). Putative anticancer potential of novel 4-thiazolidinone derivatives: cytotoxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats. Croatian Medical Journal, 57(2), 151-163. doi:10.3325/cmj.2016.57.151 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Li, Z., & Loh, X. J. (2016). Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. WIREs Nanomedicine and Nanobiotechnology, 9(3). doi:10.1002/wnan.1429 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Liao, W., McNutt, M. A., & Zhu, W. G. (2009). The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods, 48(1), 46-53. doi:10.1016/j.ymeth.2009.02.016 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lin, C. K., Liu, S. T., Chang, C. C., & Huang, S. M. (2019). Regulatory mechanisms of fluvastatin and lovastatin for the p21 induction in human cervical cancer HeLa cells. PloS One, 14(4), e0214408. doi:10.1371/journal.pone.0214408 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Liu, X., Tian, P.-K., Ju, D.-W., Zhang, M.-H., Yao, M., Cao, X.-T., & Gu, J.-R. (2003). Systemic genetic transfer of p21WAF−1 and GM-CSF utilizing of a novel oligopeptide-based EGF receptor targeting polyplex. Cancer Gene Therapy, 10(7), 529-539. doi:10.1038/sj.cgt.7700596 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mahmood, T., & Yang, P. C. (2012). Western blot: technique, theory, and trouble shooting. North American Journal of Medical Sciences, 4(9), 429-434. doi:10.4103/1947-2714.100998 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Paiuk, O., Mitina, N., Slouf, M., Pavlova, E., Finiuk, N., Kinash, N., Karkhut, A., Manko, N., Gromovoy, T., Hevus, O., Shermolovich, Y., Stoika, R., & Zaichenko, A. (2019). Fluorine-containing block/branched polyamphiphiles forming bioinspired complexes with biopolymers. Colloids and surfaces. B, Biointerfaces, 174, 393-400. doi:10.1016/j.colsurfb.2018.11.047 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pedroza-Torres, A., Campos-Parra, A. D., Millan-Catalan, O., Loissell-Baltazar, Y. A., Zamudio-Meza, H., Cantú de León, D., Montalvo-Esquivel, G., Isla-Ortiz, D., Herrera, L. A., Ángeles-Zaragoza, Ó., Robelo-Romero, G., Herrera-Gómez, Á., & Pérez-Plasencia, C. (2018). MicroRNA-125 modulates radioresistance through targeting p21 in cervical cancer. Oncology Reports, 39(3), 1532-1540. doi:10.3892/or.2018.6219 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Richter, F., Leer, K., Martin, L., Mapfumo, P., Solomun, J. I., Kuchenbrod, M. T., Hoeppener, S., Brendel, J. C., & Traeger, A. (2021). The impact of anionic polymers on gene delivery: how composition and assembly help evading the toxicity-efficiency dilemma. Journal of Nanobiotechnology, 19(1), 292. doi:10.1186/s12951-021-00994-2 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Salameh, J. W., Zhou, L., Ward, S. M., Santa Chalarca, C. F., Emrick, T., & Figueiredo, M. L. (2019). Polymer-mediated gene therapy: Recent advances and merging of delivery techniques. WIREs Nanomedicine and Nanobiotechnology, 12(2). doi:10.1002/wnan.1598 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Santana-Armas, M. L., & Tros de Ilarduya, C. (2021). Strategies for cancer gene-delivery improvement by non-viral vectors. International Journal of Pharmaceutics, 596, 120291. doi:10.1016/j.ijpharm.2021.120291 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Shamloo, B., & Usluer, S. (2019). p21 in cancer research. Cancers, 11(8), 1178. doi:10.3390/cancers11081178 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zheng, Y., Wang, X., Qiu, F., & Yin, L. (2018). Amphiphilic polymer to improve polyplex stability for enhanced transfection efficiency. Polymer Bulletin, 76(5), 2471-2479. doi:10.1007/s00289-018-2506-8 Crossref ● Google Scholar | ||||
| ||||
Zhou, B. P., Liao, Y., Xia, W., Spohn, B., Lee, M.-H., & Hung, M.-C. (2001). Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biology, 3(3), 245-252. doi:10.1038/35060032 Crossref ● PubMed ● <a title="https://scholar.google.com/scholar?hl=uk&as_sdt=0%2C5&q=Zhou%2C+B.+P.%2C+Liao%2C+Y.%2C+Xia%2C+W.%2C+Spohn%2C+B.%2C+Lee%2C+M.-H.%2C+%26+Hung%2C+M.-C.+%282001%29.+Cytoplasmic+localization+of+p21Cip1%2FWAF1+by+Akt-induced+phosphorylation+in+HER-2%2Fneu-overexpressing+cells.+Nature+Cell+Biology&btnG=" href="https://scholar.google.com/scholar?hl=uk&as_sdt=0%2C5&q=Zhou%2C+B.+P.%2C+Liao%2C+Y.%2C+Xia%2C+W.%2C+Spohn%2C+B.%2C+Lee%2C+M.-H.% |
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 N. S. Finiuk, N. E. Mitina, O. Yu. Klyuchivska, I. Y. Kril, A. S. Zaichenko, R. S. Stoika
This work is licensed under a Creative Commons Attribution 4.0 International License.