LEUKOCYTES IN TYPE 1 DIABETES MELLITUS: THE CHANGES THEY UNDERGO AND INDUCE
DOI: http://dx.doi.org/10.30970/sbi.1601.674
Abstract
As leukocytes represent cellular and humoral immunity at the same time, they are a vital part of every immune process. This also stands for autoimmune processes and disorders, such as diabetes, specifically type 1 diabetes mellitus. Diabetes mellitus is one of the most widespread autoimmune diseases. Development of type 1 diabetes mellitus is mediated through complicated mechanisms of intercellular communication where leukocytes function as the key element, being both effectors and regulators. However, the immunocompetent cells are also affected by diabetic alterations, powered by chronic hyperglycemia. For example, the products of non-enzymatic interaction of glucose or other reducing sugars with either proteins or lipids, called advanced glycation end products, are associated with the development of long-term negative changes in diabetes. By binding to the receptors for advanced glycation end-products, they trigger the signaling pathways involved in expression of pro-inflammatory genes, which results in diabetic complications. As long as diabetes mellitus remains a global healthcare issue and several details of its pathogenesis are still to be discovered, it is important to analyze and investigate the peculiarities of alterations in leukocytes under type 1 diabetes mellitus, particularly the ones caused by advanced glycation end-products and their receptors.
Keywords
Full Text:
PDFReferences
Ahmed, N. (2005). Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67(1), 3-21. doi:10.1016/j.diabres.2004.09.004 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Alba-Loureiro, T. C., Munhoz, C. D., Martins, J. O., Cerchiaro, G. A., Scavone, C., Curi, R., & Sannomiya, P. (2007). Neutrophil function and metabolism in individuals with diabetes mellitus. Brazilian Journal of Medical and Biological Research, 40(8), 1037-1044. doi:10.1590/s0100-879x2006005000143 Crossref ● PubMed ● Google Scholar | ||||
| ||||
American Diabetes Association (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37(1), S81-S90. https://doi.org/10.2337/dc14-S081 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ayepola, O. R., Brooks, N. L., & Oguntibeju, O. O. (2014). Oxidative stress and diabetic complications: the role of antioxidant vitamins and flavonoids. In Oluwafemi O. Oguntibeju (Eds.), Antioxidant-Antidiabetic Agents and Human Health. IntechOpen. doi:10.5772/57282 Crossref ● Google Scholar | ||||
| ||||
Bajpai, A., & Tilley, D. G. (2018). The role of leukocytes in diabetic cardiomyopathy. Frontiers in Physiology, 9, 1547. doi:10.3389/fphys.2018.01547 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Basta, G. (2004). Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovascular Research, 63(4), 582-592. doi:10.1016/j.cardiores.2004.05.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bedard, K., & Krause, K.-H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews, 87(1), 245-313. doi:10.1152/physrev.00044.2005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bierhaus, A., Humpert, P. M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., Stern, D. M., & Nawroth, P. P. (2005). Understanding RAGE, the receptor for advanced glycation end products. Journal of Molecular Medicine, 83(11), 876-886. doi:10.1007/s00109-005-0688-7 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bila, I., Dzydzan, O., Brodyak, I., & Sybirna, N. (2019). Agmatine prevents oxidative-nitrative stress in blood leukocytes under streptozotocin-induced diabetes mellitus. Open Life Sciences, 14(1), 299-310. doi:10.1515/biol-2019-0033 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Boiarska, Z. (2019). Anti-glycation aging prevention strategies. Ukrainian Journal of Medicine, Biology and Sport, 4(6), 309-315. doi:10.26693/jmbs04.06.309 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Brodyak, I. V., Bila, I. I., & Sybirna, N. O. (2018). The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration. Biopolymers and Cell, 33(6), 403-414. doi:10.7124/bc.000964 Crossref ● Google Scholar | ||||
| ||||
Buckley, S. T., & Ehrhardt, C. (2010). The receptor for advanced glycation end products (RAGE) and the lung. Journal of Biomedicine and Biotechnology, 2010, 1-11. doi:10.1155/2010/917108 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Cao, W., Hou, F. F., & Nie, J. (2014). AOPPs and the progression of kidney disease. Kidney International Supplements, 4(1), 102-106. doi:10.1038/kisup.2014.19 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chen, H., Xiong, L., Wang, N., Liu, X., Hu, W., Yang, Z., Jiang, Y., Zheng, G., Ouyang, K., & Wang, W. (2018). Chimonanthus nitens Oliv. leaf extract exerting anti-hyperglycemic activity by modulating GLUT4 and GLUT1 in the skeletal muscle of a diabetic mouse model. Food & Function, 9(9), 4959-4967. doi:10.1039/c8fo00954f Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chibber, R., Ben-Mahmud, B., Chibber, S., & Kohner, E. (2007). Leukocytes in diabetic retinopathy. Current Diabetes Reviews, 3(1), 3-14. doi:10.2174/157339907779802139 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cnop, M., Welsh, N., Jonas, J.-C., Jörns, A., Lenzen, S., & Eizirik, D. L. (2005). Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes. Diabetes, 54(suppl_2), S97-S107. doi:10.2337/diabetes.54.suppl_2.s97 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dilworth, L., Facey, A., & Omoruyi, F. (2021). Diabetes mellitus and its metabolic complications: the role of adipose tissues. International Journal of Molecular Sciences, 22(14), 7644. doi:10.3390/ijms22147644 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058-1070. doi:10.1161/circresaha.110.223545 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Goldin, A., Beckman, J. A., Schmidt, A. M., & Creager, M. A. (2006). Advanced glycation end products. Circulation, 114(6), 597-605. doi:10.1161/circulationaha.106.621854 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Graves, D., T. (2008). Diabetic complications and dysregulated innate immunity. Frontiers in Bioscience, 13(13), 1227. doi:10.2741/2757 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gryszczyńska, B., Formanowicz, D., Budzyń, M., Wanic-Kossowska, M., Pawliczak, E., Formanowicz, P., Majewski, W., Strzyżewski, K. W., Kasprzak, M. P., & Iskra, M. (2017). Advanced oxidation protein products and carbonylated proteins as biomarkers of oxidative stress in selected atherosclerosis-mediated diseases. BioMed Research International, 2017, 1-9. doi:10.1155/2017/4975264 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Huang, J., Xiao, Y., Xu, A., & Zhou, Z. (2016). Neutrophils in type 1 diabetes. Journal of Diabetes Investigation, 7(5), 652-663. doi:10.1111/jdi.12469 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hudson, B. I., Kalea, A. Z., del Mar Arriero, M., Harja, E., Boulanger, E., D'Agati, V., & Schmidt, A. M. (2008). Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. Journal of Biological Chemistry, 283(49), 34457-34468. doi:10.1074/jbc.m801465200 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., Jacobsen, L. M., Schatz, D. A., & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3(1), 17016. doi:10.1038/nrdp.2017.16 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kawasaki, E. (2014). Type 1 diabetes and autoimmunity. Clinical Pediatric Endocrinology, 23(4), 99-105. doi:10.1297/cpe.23.99 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kerksick, C. M., & Zuhl, M. (2015) Mechanisms of oxidative damage and their impact on contracting muscle. In M. Lamprecht (Ed.), Antioxidants in Sport Nutrition. CRC Boca Raton, FL: CRC Press, 1-16. Crossref ● Google Scholar | ||||
| ||||
Khan, R., Yee Ooi, X., Parvus, M., Valdez, L., & Tsin, A. (2020). Advanced glycation end products: formation, role in diabetic complications, and potential in clinical applications. In J. Grigsby & F. Derbel (Ed.), The Eye and Foot in Diabetes. IntechOpen. doi:10.5772/intechopen.89408 Crossref ● Google Scholar | ||||
| ||||
Kharroubi, A. T. (2015). Diabetes mellitus: The epidemic of the century. World Journal of Diabetes, 6(6), 850. doi:10.4239/wjd.v6.i6.850 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kierdorf K., & Fritz, G. (2013). RAGE regulation and signaling in inflammation and beyond. The Journal of Leukocyte Biology, 94(1), 55-68. doi:10.1189/jlb.1012519 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kitabchi, A. E., Umpierrez, G. E., Miles, J. M., & Fisher, J. N. (2009). Hyperglycemic сrises in adult patients with diabetes. Diabetes Care, 32(7), 1335-1343. doi:10.2337/dc09-9032 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lindsey, J. B., Cipollone, F., Abdullah, S. M., & McGuire, D. K. (2009). Receptor for advanced glycation end-products (RAGE) and soluble RAGE (sRAGE): cardiovascular implications. Diabetes & Vascular Disease Research, 6(1), 7-14. doi:10.3132/dvdr.2009.002 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mallone, R., & Brezar, V. (2011). To B or Not to B: (Anti)bodies of evidence on the crime scene of type 1 diabetes? Diabetes, 60(8), 2020-2022. doi:10.2337/db11-0700 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Marca, V., Gianchecchi, E., & Fierabracci, A. (2018). Type 1 diabetes and its multi-factorial pathogenesis: the putative role of NK cells. International Journal of Molecular Sciences, 19(3), 794. doi:10.3390/ijms19030794 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Marques, C. M. S., Nunes, E. A., Lago, L., Pedron, C. N., Manieri, T. M., Sato, R. H., Oliveira, V. X., & Cerchiaro, G. (2017). Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 824, 42-51. doi:10.1016/j.mrgentox.2017.10.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Masuda, M., Murakami, T., Egawa, H., & Murata, K. (1990). Decreased fluidity of polymorphonuclear leukocyte membrane in streptozocin-induced diabetic rats. Diabetes, 39(4), 466-470. doi:10.2337/diab.39.4.466 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Obrosova, I. G. (2005). Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxidants & Redox Signaling, 7(11-12), 1543-1552. doi:10.1089/ars.2005.7.1543 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Oliveira, M. I. A., Souza, E. M. de, Pedrosa, F. de O., Réa, R. R., Alves, A. da S. C., Picheth, G., & Rego, F. G. de M. (2013). RAGE receptor and its soluble isoforms in diabetes mellitus complications. Jornal Brasileiro de Patologia e Medicina Laboratorial, 49(2), 97-108. doi:10.1590/s1676-24442013000200004 Crossref ● Google Scholar | ||||
| ||||
Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., & Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biology, 2, 411-429. doi:10.1016/j.redox.2013.12.016 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Paschou, S. A., Papadopoulou-Marketou, N., Chrousos, G. P., & Kanaka-Gantenbein, C. (2018). On type 1 diabetes mellitus pathogenesis. Endocrine Connections, 7(1), R38-R46. doi:10.1530/ec-17-0347 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Perrone, A., Giovino, A., Benny, J., & Martinelli, F. (2020). Advanced glycation end products (AGEs): biochemistry, signaling, analytical methods, and epigenetic effects. Oxidative Medicine and Cellular Longevity, 2020, 1-18. doi:10.1155/2020/3818196 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Punthakee, Z., Goldenberg, R., & Katz, P. (2018). Definition, classification and siagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes, 42, S10-S15. doi:10.1016/j.jcjd.2017.10.003 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Qin, J., Goswami, R., Dawson, S., & Dawson, G. (2008). Expression of the receptor for advanced glycation end products in oligodendrocytes in response to oxidative stress. Journal of Neuroscience Research, 86(11), 2414-2422. doi:10.1002/jnr.21692 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Raucci, A., Cugusi, S., Antonelli, A., Barabino, S. M., Monti, L., Bierhaus, A., Reiss, K., Saftig, P., & Bianchi, M. E. (2008). A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). The FASEB Journal, 22(10), 3716-3727. doi:10.1096/fj.08-109033 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rungratanawanich, W., Qu, Y., Wang, X., Essa, M. M., & Song, B.-J. (2021). Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Experimental & Molecular Medicine, 53(2), 168-188. doi:10.1038/s12276-021-00561-7 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sannomiya, P., Oliveira, M. A., & Fortes, Z. B. (1997). Aminoguanidine and the prevention of leukocyte dysfunction in diabetes mellitus: a direct vital microscopic study. British Journal of Pharmacology, 122(5), 894-898. doi:10.1038/sj.bjp.0701448 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Schmoch, T., Uhle, F., Siegler, B. H., Fleming, T., Morgenstern, J., Nawroth, P. P., Weigand, M. A., & Brenner, T. (2017). The glyoxalase system and methylglyoxal-derived carbonyl stress in sepsis: glycotoxic aspects of sepsis pathophysiology. International Journal of Molecular Sciences, 18(3), 657. doi:10.3390/ijms18030657 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Singh, V. P., Bali, A., Singh, N., & Jaggi, A. S. (2014). Advanced glycation end products and diabetic complications. The Korean Journal of Physiology & Pharmacology, 18(1), 1. doi:10.4196/kjpp.2014.18.1.1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Song, Q., Liu, J., Dong, L., Wang, X., & Zhang, X. (2021). Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomedicine & Pharmacotherapy, 140, 111750. doi:10.1016/j.biopha.2021.111750 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sybirna, N., Barska, M., & Gryshchuk, I. (2004). Morfological and functional characteristics of immunocompetent blood cells under diabetes mellitus. Visnyk of Lviv University. Biological Series, 35, 77-83. (In Ukrainian) Google Scholar | ||||
| ||||
Wautier, M.-P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M., & Wautier, J.-L. (2001). Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. American Journal of Physiology-Endocrinology and Metabolism, 280(5), E685-E694. doi:10.1152/ajpendo.2001.280.5.e685 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Xie, Z., Chang, C., & Zhou, Z. (2014). Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clinical Reviews in Allergy & Immunology, 47(2), 174-192. doi:10.1007/s12016-014-8422-2 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yoon, J.-W., & Jun, H.-S. (2005). Autoimmune destruction of pancreatic β cells. American Journal of Therapeutics, 12(6), 580-591. doi:10.1097/01.mjt.0000178767.67857.63 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zdioruk, M., Brodyak, I., & Sybirna, N. (2011). Participation of PI-3′-kinase signaling pathway in determining structural and functional state of leukocyte membranes under type 1 diabetes mellitus. Studia Biologica, 5(1), 85-96. doi:10.30970/sbi.0501.138 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Zhang, D. Q., Yang, L., Wang R., Li, T., Zhou, J. P., Chang, G. Q., Zhao, N., Yang, L. N., & Zhai, H. (2016). Reduced soluble RAGE is associated with disease severity of axonal Guillain-Barré syndrome. Scientific Reports, 6(1). doi:10.1038/srep21890 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, P., Li, T., Wu, X., Nice, E. C., Huang, C., & Zhang, Y. (2020). Oxidative stress and diabetes: antioxidative strategies. Frontiers of Medicine, 14(5), 583-600. doi:10.1007/s11684-019-0729-1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zhang, L., Bukulin, M., Kojro, E., Roth, A., Metz, V. V., Fahrenholz, F., Nawroth, P. P., Bierhaus, A., & Postina, R. (2008). Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. Journal of Biological Chemistry, 283(51), 35507-35516. doi:10.1074/jbc.M806948200 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 O. M. Kuchurka, M. O. Chaban, O. V. Dzydzan, I. V. Brodyak, N. O. Sybirna
This work is licensed under a Creative Commons Attribution 4.0 International License.