LEUKOCYTES IN TYPE 1 DIABETES MELLITUS: THE CHANGES THEY UNDERGO AND INDUCE

O. M. Kuchurka, M. O. Chaban, O. V. Dzydzan, I. V. Brodyak, N. O. Sybirna


DOI: http://dx.doi.org/10.30970/sbi.1601.674

Abstract


As leukocytes represent cellular and humoral immunity at the same time, they are a vital part of every immune process. This also stands for autoimmune processes and disorders, such as diabetes, specifically type 1 diabetes mellitus. Diabetes mellitus is one of the most widespread autoimmune diseases. Development of type 1 diabetes mellitus is mediated through complicated mechanisms of intercellular communication where leukocytes function as the key element, being both effectors and regulators. However, the immunocompetent cells are also affected by diabetic alterations, powered by chronic hyperglycemia. For example, the products of non-enzymatic interaction of glucose or other reducing sugars with either proteins or lipids, called advanced glycation end products, are associated with the development of long-term negative changes in diabetes. By binding to the receptors for advanced glycation end-products, they trigger the signaling pathways involved in expression of pro-inflammatory genes, which results in diabetic complications. As long as diabetes mellitus remains a global healthcare issue and several details of its pathogenesis are still to be discovered, it is important to analyze and investigate the peculiarities of alterations in leukocytes under type 1 diabetes mellitus, particularly the ones caused by advanced glycation end-products and their receptors.


Keywords


type 1 diabetes mellitus, leukocytes, advanced glycation end-products, receptors for advanced glycation end-products

Full Text:

PDF

References


Ahmed, N. (2005). Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67(1), 3-21. doi:10.1016/j.diabres.2004.09.004
CrossrefPubMedGoogle Scholar

Alba-Loureiro, T. C., Munhoz, C. D., Martins, J. O., Cerchiaro, G. A., Scavone, C., Curi, R., & Sannomiya, P. (2007). Neutrophil function and metabolism in individuals with diabetes mellitus. Brazilian Journal of Medical and Biological Research, 40(8), 1037-1044. doi:10.1590/s0100-879x2006005000143
CrossrefPubMedGoogle Scholar

American Diabetes Association (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37(1), S81-S90. https://doi.org/10.2337/dc14-S081
CrossrefPubMedGoogle Scholar

Ayepola, O. R., Brooks, N. L., & Oguntibeju, O. O. (2014). Oxidative stress and diabetic complications: the role of antioxidant vitamins and flavonoids. In Oluwafemi O. Oguntibeju (Eds.), Antioxidant-Antidiabetic Agents and Human Health. IntechOpen. doi:10.5772/57282
CrossrefGoogle Scholar

Bajpai, A., & Tilley, D. G. (2018). The role of leukocytes in diabetic cardiomyopathy. Frontiers in Physiology, 9, 1547. doi:10.3389/fphys.2018.01547
CrossrefPubMedPMCGoogle Scholar

Basta, G. (2004). Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovascular Research, 63(4), 582-592. doi:10.1016/j.cardiores.2004.05.001
CrossrefPubMedGoogle Scholar

Bedard, K., & Krause, K.-H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological Reviews, 87(1), 245-313. doi:10.1152/physrev.00044.2005
CrossrefPubMedGoogle Scholar

Bierhaus, A., Humpert, P. M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., Stern, D. M., & Nawroth, P. P. (2005). Understanding RAGE, the receptor for advanced glycation end products. Journal of Molecular Medicine, 83(11), 876-886. doi:10.1007/s00109-005-0688-7
CrossrefPubMedGoogle Scholar

Bila, I., Dzydzan, O., Brodyak, I., & Sybirna, N. (2019). Agmatine prevents oxidative-nitrative stress in blood leukocytes under streptozotocin-induced diabetes mellitus. Open Life Sciences, 14(1), 299-310. doi:10.1515/biol-2019-0033
CrossrefPubMedPMCGoogle Scholar

Boiarska, Z. (2019). Anti-glycation aging prevention strategies. Ukrainian Journal of Medicine, Biology and Sport, 4(6), 309-315. doi:10.26693/jmbs04.06.309 (In Ukrainian)
CrossrefGoogle Scholar

Brodyak, I. V., Bila, I. I., & Sybirna, N. O. (2018). The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration. Biopolymers and Cell, 33(6), 403-414. doi:10.7124/bc.000964
CrossrefGoogle Scholar

Buckley, S. T., & Ehrhardt, C. (2010). The receptor for advanced glycation end products (RAGE) and the lung. Journal of Biomedicine and Biotechnology, 2010, 1-11. doi:10.1155/2010/917108
CrossrefPubMedPMCGoogle Scholar

Cao, W., Hou, F. F., & Nie, J. (2014). AOPPs and the progression of kidney disease. Kidney International Supplements, 4(1), 102-106. doi:10.1038/kisup.2014.19
CrossrefPubMedPMCGoogle Scholar

Chen, H., Xiong, L., Wang, N., Liu, X., Hu, W., Yang, Z., Jiang, Y., Zheng, G., Ouyang, K., & Wang, W. (2018). Chimonanthus nitens Oliv. leaf extract exerting anti-hyperglycemic activity by modulating GLUT4 and GLUT1 in the skeletal muscle of a diabetic mouse model. Food & Function, 9(9), 4959-4967. doi:10.1039/c8fo00954f
CrossrefPubMedGoogle Scholar

Chibber, R., Ben-Mahmud, B., Chibber, S., & Kohner, E. (2007). Leukocytes in diabetic retinopathy. Current Diabetes Reviews, 3(1), 3-14. doi:10.2174/157339907779802139
CrossrefPubMedGoogle Scholar

Cnop, M., Welsh, N., Jonas, J.-C., Jörns, A., Lenzen, S., & Eizirik, D. L. (2005). Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes. Diabetes, 54(suppl_2), S97-S107. doi:10.2337/diabetes.54.suppl_2.s97
CrossrefPubMedGoogle Scholar

Dilworth, L., Facey, A., & Omoruyi, F. (2021). Diabetes mellitus and its metabolic complications: the role of adipose tissues. International Journal of Molecular Sciences, 22(14), 7644. doi:10.3390/ijms22147644
CrossrefPubMedPMCGoogle Scholar

Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058-1070. doi:10.1161/circresaha.110.223545
CrossrefPubMedPMCGoogle Scholar

Goldin, A., Beckman, J. A., Schmidt, A. M., & Creager, M. A. (2006). Advanced glycation end products. Circulation, 114(6), 597-605. doi:10.1161/circulationaha.106.621854
CrossrefPubMedGoogle Scholar

Graves, D., T. (2008). Diabetic complications and dysregulated innate immunity. Frontiers in Bioscience, 13(13), 1227. doi:10.2741/2757
CrossrefPubMedPMCGoogle Scholar

Gryszczyńska, B., Formanowicz, D., Budzyń, M., Wanic-Kossowska, M., Pawliczak, E., Formanowicz, P., Majewski, W., Strzyżewski, K. W., Kasprzak, M. P., & Iskra, M. (2017). Advanced oxidation protein products and carbonylated proteins as biomarkers of oxidative stress in selected atherosclerosis-mediated diseases. BioMed Research International, 2017, 1-9. doi:10.1155/2017/4975264
CrossrefPubMedPMCGoogle Scholar

Huang, J., Xiao, Y., Xu, A., & Zhou, Z. (2016). Neutrophils in type 1 diabetes. Journal of Diabetes Investigation, 7(5), 652-663. doi:10.1111/jdi.12469
CrossrefPubMedPMCGoogle Scholar

Hudson, B. I., Kalea, A. Z., del Mar Arriero, M., Harja, E., Boulanger, E., D'Agati, V., & Schmidt, A. M. (2008). Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. Journal of Biological Chemistry, 283(49), 34457-34468. doi:10.1074/jbc.m801465200
CrossrefPubMedPMCGoogle Scholar

Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., Jacobsen, L. M., Schatz, D. A., & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3(1), 17016. doi:10.1038/nrdp.2017.16
CrossrefPubMedGoogle Scholar

Kawasaki, E. (2014). Type 1 diabetes and autoimmunity. Clinical Pediatric Endocrinology, 23(4), 99-105. doi:10.1297/cpe.23.99
CrossrefPubMedPMCGoogle Scholar

Kerksick, C. M., & Zuhl, M. (2015) Mechanisms of oxidative damage and their impact on contracting muscle. In M. Lamprecht (Ed.), Antioxidants in Sport Nutrition. CRC Boca Raton, FL: CRC Press, 1-16.
CrossrefGoogle Scholar

Khan, R., Yee Ooi, X., Parvus, M., Valdez, L., & Tsin, A. (2020). Advanced glycation end products: formation, role in diabetic complications, and potential in clinical applications. In J. Grigsby & F. Derbel (Ed.), The Eye and Foot in Diabetes. IntechOpen. doi:10.5772/intechopen.89408
CrossrefGoogle Scholar

Kharroubi, A. T. (2015). Diabetes mellitus: The epidemic of the century. World Journal of Diabetes, 6(6), 850. doi:10.4239/wjd.v6.i6.850
CrossrefPubMedPMCGoogle Scholar

Kierdorf K., & Fritz, G. (2013). RAGE regulation and signaling in inflammation and beyond. The Journal of Leukocyte Biology, 94(1), 55-68. doi:10.1189/jlb.1012519
CrossrefPubMedGoogle Scholar

Kitabchi, A. E., Umpierrez, G. E., Miles, J. M., & Fisher, J. N. (2009). Hyperglycemic сrises in adult patients with diabetes. Diabetes Care, 32(7), 1335-1343. doi:10.2337/dc09-9032
CrossrefPubMedPMCGoogle Scholar

Lindsey, J. B., Cipollone, F., Abdullah, S. M., & McGuire, D. K. (2009). Receptor for advanced glycation end-products (RAGE) and soluble RAGE (sRAGE): cardiovascular implications. Diabetes & Vascular Disease Research, 6(1), 7-14. doi:10.3132/dvdr.2009.002
CrossrefPubMedGoogle Scholar

Mallone, R., & Brezar, V. (2011). To B or Not to B: (Anti)bodies of evidence on the crime scene of type 1 diabetes? Diabetes, 60(8), 2020-2022. doi:10.2337/db11-0700
CrossrefPubMedPMCGoogle Scholar

Marca, V., Gianchecchi, E., & Fierabracci, A. (2018). Type 1 diabetes and its multi-factorial pathogenesis: the putative role of NK cells. International Journal of Molecular Sciences, 19(3), 794. doi:10.3390/ijms19030794
CrossrefPubMedPMCGoogle Scholar

Marques, C. M. S., Nunes, E. A., Lago, L., Pedron, C. N., Manieri, T. M., Sato, R. H., Oliveira, V. X., & Cerchiaro, G. (2017). Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 824, 42-51. doi:10.1016/j.mrgentox.2017.10.005
CrossrefPubMedGoogle Scholar

Masuda, M., Murakami, T., Egawa, H., & Murata, K. (1990). Decreased fluidity of polymorphonuclear leukocyte membrane in streptozocin-induced diabetic rats. Diabetes, 39(4), 466-470. doi:10.2337/diab.39.4.466
CrossrefPubMedGoogle Scholar

Obrosova, I. G. (2005). Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxidants & Redox Signaling, 7(11-12), 1543-1552. doi:10.1089/ars.2005.7.1543
CrossrefPubMedGoogle Scholar

Oliveira, M. I. A., Souza, E. M. de, Pedrosa, F. de O., Réa, R. R., Alves, A. da S. C., Picheth, G., & Rego, F. G. de M. (2013). RAGE receptor and its soluble isoforms in diabetes mellitus complications. Jornal Brasileiro de Patologia e Medicina Laboratorial, 49(2), 97-108. doi:10.1590/s1676-24442013000200004
CrossrefGoogle Scholar

Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., & Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biology, 2, 411-429. doi:10.1016/j.redox.2013.12.016
CrossrefPubMedPMCGoogle Scholar

Paschou, S. A., Papadopoulou-Marketou, N., Chrousos, G. P., & Kanaka-Gantenbein, C. (2018). On type 1 diabetes mellitus pathogenesis. Endocrine Connections, 7(1), R38-R46. doi:10.1530/ec-17-0347
CrossrefPubMedPMCGoogle Scholar

Perrone, A., Giovino, A., Benny, J., & Martinelli, F. (2020). Advanced glycation end products (AGEs): biochemistry, signaling, analytical methods, and epigenetic effects. Oxidative Medicine and Cellular Longevity, 2020, 1-18. doi:10.1155/2020/3818196
CrossrefPubMedPMCGoogle Scholar

Punthakee, Z., Goldenberg, R., & Katz, P. (2018). Definition, classification and siagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes, 42, S10-S15. doi:10.1016/j.jcjd.2017.10.003
CrossrefPubMedGoogle Scholar

Qin, J., Goswami, R., Dawson, S., & Dawson, G. (2008). Expression of the receptor for advanced glycation end products in oligodendrocytes in response to oxidative stress. Journal of Neuroscience Research, 86(11), 2414-2422. doi:10.1002/jnr.21692
CrossrefPubMedPMCGoogle Scholar

Raucci, A., Cugusi, S., Antonelli, A., Barabino, S. M., Monti, L., Bierhaus, A., Reiss, K., Saftig, P., & Bianchi, M. E. (2008). A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). The FASEB Journal, 22(10), 3716-3727. doi:10.1096/fj.08-109033
CrossrefPubMedGoogle Scholar

Rungratanawanich, W., Qu, Y., Wang, X., Essa, M. M., & Song, B.-J. (2021). Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Experimental & Molecular Medicine, 53(2), 168-188. doi:10.1038/s12276-021-00561-7
CrossrefPubMedPMCGoogle Scholar

Sannomiya, P., Oliveira, M. A., & Fortes, Z. B. (1997). Aminoguanidine and the prevention of leukocyte dysfunction in diabetes mellitus: a direct vital microscopic study. British Journal of Pharmacology, 122(5), 894-898. doi:10.1038/sj.bjp.0701448
CrossrefPubMedPMCGoogle Scholar

Schmoch, T., Uhle, F., Siegler, B. H., Fleming, T., Morgenstern, J., Nawroth, P. P., Weigand, M. A., & Brenner, T. (2017). The glyoxalase system and methylglyoxal-derived carbonyl stress in sepsis: glycotoxic aspects of sepsis pathophysiology. International Journal of Molecular Sciences, 18(3), 657. doi:10.3390/ijms18030657
CrossrefPubMedPMCGoogle Scholar

Singh, V. P., Bali, A., Singh, N., & Jaggi, A. S. (2014). Advanced glycation end products and diabetic complications. The Korean Journal of Physiology & Pharmacology, 18(1), 1. doi:10.4196/kjpp.2014.18.1.1
CrossrefPubMedPMCGoogle Scholar

Song, Q., Liu, J., Dong, L., Wang, X., & Zhang, X. (2021). Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomedicine & Pharmacotherapy, 140, 111750. doi:10.1016/j.biopha.2021.111750
CrossrefPubMedGoogle Scholar

Sybirna, N., Barska, M., & Gryshchuk, I. (2004). Morfological and functional characteristics of immunocompetent blood cells under diabetes mellitus. Visnyk of Lviv University. Biological Series, 35, 77-83. (In Ukrainian)
Google Scholar

Wautier, M.-P., Chappey, O., Corda, S., Stern, D. M., Schmidt, A. M., & Wautier, J.-L. (2001). Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. American Journal of Physiology-Endocrinology and Metabolism, 280(5), E685-E694. doi:10.1152/ajpendo.2001.280.5.e685
CrossrefPubMedGoogle Scholar

Xie, Z., Chang, C., & Zhou, Z. (2014). Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clinical Reviews in Allergy & Immunology, 47(2), 174-192. doi:10.1007/s12016-014-8422-2
CrossrefPubMedGoogle Scholar

Yoon, J.-W., & Jun, H.-S. (2005). Autoimmune destruction of pancreatic β cells. American Journal of Therapeutics, 12(6), 580-591. doi:10.1097/01.mjt.0000178767.67857.63
CrossrefPubMedGoogle Scholar

Zdioruk, M., Brodyak, I., & Sybirna, N. (2011). Participation of PI-3′-kinase signaling pathway in determining structural and functional state of leukocyte membranes under type 1 diabetes mellitus. Studia Biologica, 5(1), 85-96. doi:10.30970/sbi.0501.138 (In Ukrainian)
CrossrefGoogle Scholar

Zhang, D. Q., Yang, L., Wang R., Li, T., Zhou, J. P., Chang, G. Q., Zhao, N., Yang, L. N., & Zhai, H. (2016). Reduced soluble RAGE is associated with disease severity of axonal Guillain-Barré syndrome. Scientific Reports, 6(1). doi:10.1038/srep21890
CrossrefPubMedPMCGoogle Scholar

Zhang, P., Li, T., Wu, X., Nice, E. C., Huang, C., & Zhang, Y. (2020). Oxidative stress and diabetes: antioxidative strategies. Frontiers of Medicine, 14(5), 583-600. doi:10.1007/s11684-019-0729-1
CrossrefPubMedGoogle Scholar

Zhang, L., Bukulin, M., Kojro, E., Roth, A., Metz, V. V., Fahrenholz, F., Nawroth, P. P., Bierhaus, A., & Postina, R. (2008). Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. Journal of Biological Chemistry, 283(51), 35507-35516. doi:10.1074/jbc.M806948200
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 O. M. Kuchurka, M. O. Chaban, O. V. Dzydzan, I. V. Brodyak, N. O. Sybirna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.