EFFECT OF SILVER NANOPARTICLES ON MANURATION OF RABBIT’S OOCYTES CO-CULTURED WITH GRANULOSA CELLS IN VITRO

V. J. Syrvatka, Y. I. Slyvchuk, I. I. Rozgoni, I. I. Gevkan, O. V. Shtapenko


DOI: http://dx.doi.org/10.30970/sbi.0901.419

Abstract


Silver nanoparticles are widely used in different fields of medicine despite the lack of information on their influence on animal’s reproductive system, mammalian gametes and embryos. We investigated the effect of different concentrations of silver nanoparticles (0, 0.01, 0.1, 1 and 10 µg/mL) on maturation of rabbit’s oocytes co-culture with granulosa cells in vitro. For this purpose, we synthesized small (11.28±0.32 nm) sphe­rical silver nanoparticles with different composite agents: polyvinylpyrrolidone and bovine serum albumin. Our results have shown that silver nanoparticles at the concentration of 10 µg/ml inhibited granulosa cells proliferation, but did not influence the oocytes maturation to metaphase-2. The loss of granulosa cells viability was confirmed by the release of calcium and lactate dehydrogenase in the culture medium. Analysis of the data showed that silver nanoparticles in concentration of 0–10 µg/mL did not influence on progesterone and cholesterol concentration in culture medium. We have hypothesized that less toxic effect of silver nanoparticles on oocytes is caused by the presence of zona pellucida with different mechanisms of cellular uptake.


Keywords


silver nanoparticles, oocytes, granulosa cells, rabbits

Full Text:

PDF

References


1. Asare N., Instanes C., Sandberg W.J. et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 2012; 291: 65-72.
https://doi.org/10.1016/j.tox.2011.10.022
PMid:22085606

2. AshaRani P.V., Hande P.M., Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biology, 2009; 10: 65.
https://doi.org/10.1186/1471-2121-10-65
PMid:19761582 PMCid:PMC2759918

3. AshaRani P.V., Mun G.L.K., Hande P.M., Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009; 3: 279-290.
https://doi.org/10.1021/nn800596w
PMid:19236062

4. AshaRani P.V., Wu Y.L., Gong Z., Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 2008; 19: 255102.
https://doi.org/10.1088/0957-4484/19/25/255102
PMid:21828644

5. Atiyeh B.S., Costagliola M., Hayek S.N., Dibo S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 2007; 33: 139-148.
https://doi.org/10.1016/j.burns.2006.06.010
PMid:17137719

6. Braydich-Stolle L., Hussain S., Schlager J. In vitro cytotoxicity of nanoparticles in mammalian germ-line stem cells. Toxicol. Sci, 2005; 88: 412-419.
https://doi.org/10.1093/toxsci/kfi256
PMid:16014736 PMCid:PMC2911231

7. Carlson C., Hussain S.M., Schrand A.M. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem, 2008; 112(43): 13608-13619.
https://doi.org/10.1021/jp712087m
PMid:18831567

8. Freshney R.I. Culture of Animal Cells: A Manual of Basic Technique. 5th Ed. John Wiley & Sons, Inc., 2005. 361 p.
https://doi.org/10.1002/9780471747598

9. Galdiero S., Falanga A., Vitiello M. et al. Silver Nanoparticles as potential antiviral agents. Molecules, 2011; 16: 889-8918.
https://doi.org/10.3390/molecules16108894
PMid:22024958 PMCid:PMC6264685

10. Ghorbanzadeh V., Moshtaghian S.J., Habibian S., Ebadi A.G. Influence of nano-silver on primary follicles of ovary via intraperitoneal injection in rats. World Journal of Zoology, 2011; 6(2): 215-216.

11. Gordon I. Laboratory production of cattle embryos. CAB international, Wallingford, UK, 1995. 132 p.

12. Haase A., Rott S., Mantion A. et al. Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol. Sci, 2012; 126(2): 457-468.
https://doi.org/10.1093/toxsci/kfs003
PMid:22240980 PMCid:PMC3307608

13. Harvey P.W., Everett D.J. The adrenal cortex and steroidogenesis as cellular and molecular targets for toxicity: critical omissions from regulatory endocrine disrupter screening strategies for human health? Journal of Applied Toxicology, 2003; 23: 81-87.
https://doi.org/10.1002/jat.896
PMid:12666151

14. Hussain S.M., Hess K.L., Gearhart J.M. et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 2005; 19: 975-983.
https://doi.org/10.1016/j.tiv.2005.06.034
PMid:16125895

15. Jiang J-Y., Xiong H., Cao M. et al. Mural granulosa cell gene expression associated with oocyte developmental competence. Journal of Ovarian Research, 2010; 3: 1-6.
https://doi.org/10.1186/1757-2215-3-6
PMid:20205929 PMCid:PMC2845131

16. Kannan R.R., Jerley A.J.A., Ranjani M., Prakash V.S.G. Antimicrobial silver nanoparticle induces organ deformities in the developing Zebrafish (Danio rerio) embryos. J. Biomedical Science and Engineering, 2011; 4: 248-254.
https://doi.org/10.4236/jbise.2011.44034

17. Kidder G.M., Vanderhyden B.C. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol, 2010; 88(4): 399-413.
https://doi.org/10.1139/Y10-009
PMid:20555408 PMCid:PMC3025001

18. Kim J.S., Kuk E., Yu K.N. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007; 3: 95-101.
https://doi.org/10.1016/j.nano.2006.12.001
PMid:17379174

19. Kolesarova A., Capcarova M., Sirotkin A.V., Kovacik J. Effect of lead, silver and molybdenum on steroidogenesis in porcine ovarian granulosa cells in vitro. Ecological Chemistry and Engineering A, 2010; 17(1): 107-117.

20. Kolesarova A., Capcarova M., Sirotkin A.V. et al. In vitro assessment of silver effect on porcine ovarian granulosacells. Journal of Trace Elements in Medicine and Biology, 2011; 25(3): 166-170.
https://doi.org/10.1016/j.jtemb.2011.05.002
PMid:21703837

21. Lee K.J., Nallathamby P.D., Browning L.M. et al. In vivo imaging of transport and biocompa¬tibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano, 2007; 1(2): 133-143.
https://doi.org/10.1021/nn700048y
PMid:19122772 PMCid:PMC2613370

22. Lim H.K., Asharani P.V., Hande M.P. Enhanced genotoxicity of silver nanoparticles in DNA repair deficient mammalian cells. Front Gene, 2012; 3: 104.
https://doi.org/10.3389/fgene.2012.00104
PMid:22707954 PMCid:PMC3374476

23. Li P.W., Kuo T.H., Chang J.H. et al. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol. Lett, 2010;197; 82-87.
https://doi.org/10.1016/j.toxlet.2010.05.003
PMid:20478369

24. Liu X., Qin D., Cui Y. et al. The effect of calcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells. Reproductive Biology and Endocrinology, 2010; 8: 32.
https://doi.org/10.1186/1477-7827-8-32
PMid:20359372 PMCid:PMC2867813

25. Matzuk M.M., Burns K.H., Viveiros M.M., Eppig J.J. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, 2002; 296: 2178-2180.
https://doi.org/10.1126/science.1071965
PMid:12077402

26. Ostad S.N., Dehnad S., Nazari Z.E. et al. Cytotoxic activities of silver nanoparticles and silver ions in parent and tamoxifen-resistant T47D human breast cancer cells and their combination effects with tamoxifen against resistant cells. Avicenna Journal of Medical Biotechnology, 2010; 2(4): 187-196.

27. Pal S., Tak Y.K., Song J.M. Does antibacterial activity of silver nanoparticle depend on shape of nanoparticle? A study on Gram-negative E. colli. Appl. Environ. Microbiol, 2007; 73: 1712-1720.
https://doi.org/10.1128/AEM.02218-06
PMid:17261510 PMCid:PMC1828795

28. Park E-J., Yi J., Kim Y., et al. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 2010; 24: 872-878.
https://doi.org/10.1016/j.tiv.2009.12.001
PMid:19969064

29. Rivero P.J., Urrutia A., Goicoechea J. et al. An antibacterial coating based on a polymer/solgel hybrid matrix loaded with silver nanoparticles. Nanoscale Research Letters, 2011; 6: 305.
https://doi.org/10.1186/1556-276X-6-305
PMid:21711825 PMCid:PMC3211391

30. Sawosz E., Grodzik M., Zielinska M. et al. Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Arch. Geflugelkd, 2009; 73: 208-213.

31. Sikorska J., Szmidt M., Sawosz E. et al. Can silver nanoparticles affect the mineral content, structure and mechanical properties of chicken embryo bones? J. Anim. Feed Sci, 2010; 2: 286-291.
https://doi.org/10.22358/jafs/66290/2010

32. Singh R.P., Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol. Lett, 2012; 213(2): 249-259.
https://doi.org/10.1016/j.toxlet.2012.07.009
PMid:22820426

33. Solomon S.D., Bahadory M., Jeyarajasingam A.V. et al. Synthesis and study of silver nanoparticles. J. Chem. Ed, 2007; 84: 322-325.
https://doi.org/10.1021/ed084p322

34. Stelzer R., Hutz R.J. Gold nanoparticles enter rat ovarian granulosa cells and subcellular organelles, and alter in-vitro estrogen accumulation. J. Reprod. Dev, 2009; 55(6): 685-690.
https://doi.org/10.1262/jrd.20241
PMid:19789424

35. Studnicka A., Sawosz E., Grodzik M. et al. Influence of nanoparticles of silver/palladium alloy on chicken embryos' development. Animal Science, 2009; 63: 237-242.

36. Tang J., Xiong L., Wang S. et al. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl. Surf. Sci, 2008; 255: 502-504.
https://doi.org/10.1016/j.apsusc.2008.06.058

37. Taylor U., Barchanski A., Kues W. et al. Impact of metal nanoparticles on germ cell viability and functionality. Reproduction in Domestic Anim, 2012; 47(4): 359-368.
https://doi.org/10.1111/j.1439-0531.2012.02099.x
PMid:22827393


Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.