EFFECT OF SILVER NANOPARTICLES ON MANURATION OF RABBIT’S OOCYTES CO-CULTURED WITH GRANULOSA CELLS IN VITRO
DOI: http://dx.doi.org/10.30970/sbi.0901.419
Abstract
Silver nanoparticles are widely used in different fields of medicine despite the lack of information on their influence on animal’s reproductive system, mammalian gametes and embryos. We investigated the effect of different concentrations of silver nanoparticles (0, 0.01, 0.1, 1 and 10 µg/mL) on maturation of rabbit’s oocytes co-culture with granulosa cells in vitro. For this purpose, we synthesized small (11.28±0.32 nm) spherical silver nanoparticles with different composite agents: polyvinylpyrrolidone and bovine serum albumin. Our results have shown that silver nanoparticles at the concentration of 10 µg/ml inhibited granulosa cells proliferation, but did not influence the oocytes maturation to metaphase-2. The loss of granulosa cells viability was confirmed by the release of calcium and lactate dehydrogenase in the culture medium. Analysis of the data showed that silver nanoparticles in concentration of 0–10 µg/mL did not influence on progesterone and cholesterol concentration in culture medium. We have hypothesized that less toxic effect of silver nanoparticles on oocytes is caused by the presence of zona pellucida with different mechanisms of cellular uptake.
Keywords
Full Text:
PDFReferences
1. Asare N., Instanes C., Sandberg W.J. et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 2012; 291: 65-72. | |
| |
2. AshaRani P.V., Hande P.M., Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biology, 2009; 10: 65. | |
| |
3. AshaRani P.V., Mun G.L.K., Hande P.M., Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009; 3: 279-290. | |
| |
4. AshaRani P.V., Wu Y.L., Gong Z., Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 2008; 19: 255102. | |
| |
5. Atiyeh B.S., Costagliola M., Hayek S.N., Dibo S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 2007; 33: 139-148. | |
| |
6. Braydich-Stolle L., Hussain S., Schlager J. In vitro cytotoxicity of nanoparticles in mammalian germ-line stem cells. Toxicol. Sci, 2005; 88: 412-419. | |
| |
7. Carlson C., Hussain S.M., Schrand A.M. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem, 2008; 112(43): 13608-13619. | |
| |
8. Freshney R.I. Culture of Animal Cells: A Manual of Basic Technique. 5th Ed. John Wiley & Sons, Inc., 2005. 361 p. | |
| |
9. Galdiero S., Falanga A., Vitiello M. et al. Silver Nanoparticles as potential antiviral agents. Molecules, 2011; 16: 889-8918. | |
| |
10. Ghorbanzadeh V., Moshtaghian S.J., Habibian S., Ebadi A.G. Influence of nano-silver on primary follicles of ovary via intraperitoneal injection in rats. World Journal of Zoology, 2011; 6(2): 215-216. | |
| |
11. Gordon I. Laboratory production of cattle embryos. CAB international, Wallingford, UK, 1995. 132 p. | |
| |
12. Haase A., Rott S., Mantion A. et al. Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol. Sci, 2012; 126(2): 457-468. | |
| |
13. Harvey P.W., Everett D.J. The adrenal cortex and steroidogenesis as cellular and molecular targets for toxicity: critical omissions from regulatory endocrine disrupter screening strategies for human health? Journal of Applied Toxicology, 2003; 23: 81-87. | |
| |
14. Hussain S.M., Hess K.L., Gearhart J.M. et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 2005; 19: 975-983. | |
| |
15. Jiang J-Y., Xiong H., Cao M. et al. Mural granulosa cell gene expression associated with oocyte developmental competence. Journal of Ovarian Research, 2010; 3: 1-6. | |
| |
16. Kannan R.R., Jerley A.J.A., Ranjani M., Prakash V.S.G. Antimicrobial silver nanoparticle induces organ deformities in the developing Zebrafish (Danio rerio) embryos. J. Biomedical Science and Engineering, 2011; 4: 248-254. | |
| |
17. Kidder G.M., Vanderhyden B.C. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol, 2010; 88(4): 399-413. | |
| |
18. Kim J.S., Kuk E., Yu K.N. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007; 3: 95-101. | |
| |
19. Kolesarova A., Capcarova M., Sirotkin A.V., Kovacik J. Effect of lead, silver and molybdenum on steroidogenesis in porcine ovarian granulosa cells in vitro. Ecological Chemistry and Engineering A, 2010; 17(1): 107-117. | |
| |
20. Kolesarova A., Capcarova M., Sirotkin A.V. et al. In vitro assessment of silver effect on porcine ovarian granulosacells. Journal of Trace Elements in Medicine and Biology, 2011; 25(3): 166-170. | |
| |
21. Lee K.J., Nallathamby P.D., Browning L.M. et al. In vivo imaging of transport and biocompa¬tibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano, 2007; 1(2): 133-143. | |
| |
22. Lim H.K., Asharani P.V., Hande M.P. Enhanced genotoxicity of silver nanoparticles in DNA repair deficient mammalian cells. Front Gene, 2012; 3: 104. | |
| |
23. Li P.W., Kuo T.H., Chang J.H. et al. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol. Lett, 2010;197; 82-87. | |
| |
24. Liu X., Qin D., Cui Y. et al. The effect of calcium phosphate nanoparticles on hormone production and apoptosis in human granulosa cells. Reproductive Biology and Endocrinology, 2010; 8: 32. | |
| |
25. Matzuk M.M., Burns K.H., Viveiros M.M., Eppig J.J. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, 2002; 296: 2178-2180. | |
| |
26. Ostad S.N., Dehnad S., Nazari Z.E. et al. Cytotoxic activities of silver nanoparticles and silver ions in parent and tamoxifen-resistant T47D human breast cancer cells and their combination effects with tamoxifen against resistant cells. Avicenna Journal of Medical Biotechnology, 2010; 2(4): 187-196. | |
| |
27. Pal S., Tak Y.K., Song J.M. Does antibacterial activity of silver nanoparticle depend on shape of nanoparticle? A study on Gram-negative E. colli. Appl. Environ. Microbiol, 2007; 73: 1712-1720. | |
| |
28. Park E-J., Yi J., Kim Y., et al. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 2010; 24: 872-878. | |
| |
29. Rivero P.J., Urrutia A., Goicoechea J. et al. An antibacterial coating based on a polymer/solgel hybrid matrix loaded with silver nanoparticles. Nanoscale Research Letters, 2011; 6: 305. | |
| |
30. Sawosz E., Grodzik M., Zielinska M. et al. Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Arch. Geflugelkd, 2009; 73: 208-213. | |
| |
31. Sikorska J., Szmidt M., Sawosz E. et al. Can silver nanoparticles affect the mineral content, structure and mechanical properties of chicken embryo bones? J. Anim. Feed Sci, 2010; 2: 286-291. | |
| |
32. Singh R.P., Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol. Lett, 2012; 213(2): 249-259. | |
| |
33. Solomon S.D., Bahadory M., Jeyarajasingam A.V. et al. Synthesis and study of silver nanoparticles. J. Chem. Ed, 2007; 84: 322-325. | |
| |
34. Stelzer R., Hutz R.J. Gold nanoparticles enter rat ovarian granulosa cells and subcellular organelles, and alter in-vitro estrogen accumulation. J. Reprod. Dev, 2009; 55(6): 685-690. | |
| |
35. Studnicka A., Sawosz E., Grodzik M. et al. Influence of nanoparticles of silver/palladium alloy on chicken embryos' development. Animal Science, 2009; 63: 237-242. | |
| |
36. Tang J., Xiong L., Wang S. et al. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl. Surf. Sci, 2008; 255: 502-504. | |
| |
37. Taylor U., Barchanski A., Kues W. et al. Impact of metal nanoparticles on germ cell viability and functionality. Reproduction in Domestic Anim, 2012; 47(4): 359-368. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.