APPLICATION OF POLYMERIC DIMETHYLAMINOETHYL METHACRYLATE-BASED CARRIERS OF PLASMID DNA FOR GENETIC TRANSFORMATION OF CERATODON PURPUREUS MOSS

N. S. Finiuk, N. E. Mitina, O. V. Lobachevska, A. S. Zaichenko, R. S. Stoika


DOI: http://dx.doi.org/10.30970/sbi.1503.662

Abstract


Introduction. Genetic engineering in plants is of great importance for agriculture, biotechnology and medicine, and nanomaterials are widely used for genetic engineering. The aim of present study was to evaluate the potential of poly(2-dimethylamino)ethyl methacrylate (DMAEMA)-based comb-like polymers as gene delivery systems in moss Ceratodon purpureus (Hedw.) Brid. protoplasts and determine the level of phytotoxicity of these polymers.
Materials and Methods. In order to confirm the formation of complex of poly-DMAEMA carrier with plasmid DNA pSF3, gel retardation assay was used. The PEG-mediated transformation protocol was adapted to transform the protoplasts of C. purpureus moss with poly-DMAEMA carriers. Light microscopy was used to study a toxicity of polymers for moss protoplasts. The level of the polymers toxicity was estimated as IC50 value.
Results and Discussion. The formation of pDNA complex with DMAEMA-based carriers took place at 0.03% concentration of the polymers BGA-21, BGA-22(2ph), BG-24, BG-25, BG-26 or 0.1% concentration of the BGA-22 polymer. Poly-DMAEMA carriers were able to deliver plasmid DNA pSF3 into protoplasts of C. purpureus moss. Three stable transformants of C. purpureus were obtained at using BGA-22 polymer, 2 clones – at using BGA-21 carrier, and 1 clone – at using BGA-22(2ph), BG-24, BG-25, BG-26 polymers. The poly-DMAEMA carriers at the working 0.0025% dose were relatively non-toxic for protoplasts of C. purpureus moss. 83.1-88.4% of viable protoplasts of C. purpureus moss were detected after treatment with studied carriers at 0.0025% dose. A survival ratio of protoplasts reached 66.7-72.9% under the effect of these polymers at 0.025% dose, which is 10 times higher than their working concentration. The IC50 value of poly-DMAEMA carriers was in the range of 0.113-0.164%, that was approximately 10 times higher than that of the PEG-6000 used for gene delivery in plants.
Conclusion. Novel synthetic poly-DMAEMA carriers delivered the gene of interest into moss C. purpureus protoplasts and possessed a low phytotoxicity. Thus, these carriers can be useful for gene delivery into plant cells.


Keywords


dimethylaminoethyl-methacrylate, polymeric carrier, protoplasts transformation, moss Ceratodon purpureus, phytotoxicity

Full Text:

PDF

References


1. Arnold, A.E., Czupiel, P., & Shoichet, M. (2017). Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids. Journal of Controlled Release, 259, 3-15.
CrossrefPubMedGoogle Scholar

2. Cerda-Cristerna, B.I., Flores, H., Pozos-Guillén, A., Pérez, E., Sevrin, C., & Grandfils, C. (2011). Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers. Journal of Controlled Release, 153(3), 269-277.
CrossrefPubMedGoogle Scholar

3. Cheng, Q., Du, L., Meng, L., Han, S., Wei, T., Wang, X., Wu, Y., Song, X., Zhou, J., Zheng, S., Huang, Y., Liang, X.J., Cao, H., Dong, A., & Liang, Z. (2016). The promising nanocarrier for doxorubicin and siRNA co-delivery by PDMAEMA-based amphiphilic nanomicelles. ACS Applied Materials & Interfaces, 8(7), 4347-4356.
CrossrefPubMedGoogle Scholar

4. Cove, D.J., Perroud, P.F., Charron, A.J., McDaniel, S.F., Khandelwal, A., & Quatrano, R.S. (2009). The moss Physcomitrella patens: a novel model system for plant development and genomic studies. Cold Spring Harbor protocols, 2009(2), pdb.emo115-pdb.emo115.
CrossrefPubMedGoogle Scholar

5. Cunningham, F.J., Goh, N.S., Demirer, G.S., Matos, J.L., & Landry, M.P. (2018). Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology, 36(9), 882-897.
CrossrefPubMedGoogle Scholar

6. Ficen, S.Z., Guler, Z., Mitina, N., Finіuk, N., Stoika, R., Zaichenko, A., & Ceylan S.E. (2013). Biophysical study of novel oligoelectrolyte based non-viral gene delivery systems to mammalian cells. The Journal of Gene Medicine, 15(5), 193-204.
CrossrefPubMedGoogle Scholar

7. Filyak, Y., Finiuk, N., Mitina, N., Bilyk, O., Titorenko, V., Hrydzhuk, O., Zaichenko, A., & Stoika, R. (2013). A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers. BioTechniques, 54(1), 35-43.
CrossrefPubMedGoogle Scholar

8. Finiuk N., Buziashvili, A., Burlaka, O., Zaichenko, A., Mitina, N., Miagkota, O., Lobachevska, O., Stoika, R., Blume, Ya., & Yemets, A. (2017). Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells. Plant Cell, Tissue and Organ Culture (PCTOC), 131(1), 27-39.
CrossrefGoogle Scholar

9. Finiuk, N., Chaplya, A., Mitina, N., Boiko, N., Lobachevska, O., Miahkota, O., Yemets, A.I., Blume, Ya.B., Zaichenko, O.S., & Stoika, R.S. (2014). Genetic transformation of moss Ceratodon purpureus by means of polycationic carriers of DNA. Cytology and Genetics, 48(6), 345-351.
CrossrefGoogle Scholar

10. Finiuk, N., Romanyuk, N., Mitina, N., Lobachevska, O., Zaichenko, A., Terek, O., & Stoika, R. (2020). Evaluation of phytotoxicity and mutagenicity of novel DMAEMA-containing gene carriers. Cytology and Genetics, 54(5), 437-448.
CrossrefGoogle Scholar

11. Frank, W., Decker, E. L., & Reski, R. (2005). Molecular tools to study Physcomitrella patens. Plant Biology, 7(3), 220-227.
CrossrefPubMedGoogle Scholar

12. Funhoff, A.M., van Nostrum, C.F., Lok, M.C., Kruijtzer, J.A., Crommelin, D.J., & Hennink, W.E. (2005). Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors. Journal of Controlled Release, 101(1-3), 233-246.
CrossrefPubMedGoogle Scholar

13. Idrees, H., Zaidi, S., Sabir, A., Khan, R.U., Zhang, X., & Hassan, S.U. (2020). A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 10(10), 1970.
CrossrefPubMedPMCGoogle Scholar

14. Lin, S., Du, F., Wang, Y., Ji, S., Liang, D., Yu, L., & Li, Z. (2008). An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromolecules, 9(1), 109-115.
CrossrefPubMedGoogle Scholar

15. Liu, Y., & Vidali, L. (2011). Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens. Journal of Visualized Experiments, 50, e2560.
CrossrefPubMedPMCGoogle Scholar

16. Lv, H., Zhang, S., Wang, B., Cui, S., & Yan, J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release, 114(1), 100-109.
CrossrefPubMedGoogle Scholar

17. Mendrek, B., Fus, A., Klarzyńska, K., Sieroń, A. L., Smet, M., Kowalczuk, A., & Dworak, A. (2018). Synthesis, characterization and cytotoxicity of novel thermoresponsive star copolymers of N,N'-dimethylaminoethyl methacrylate and hydroxyl-bearing oligo(ethylene glycol) methacrylate. Polymers, 10(11), 1255.
CrossrefPubMedPMCGoogle Scholar

18. Newland, B., Abu-Rub, M., Naughton, M., Zheng, Y., Pinoncely, A. V., Collin, E., Dowd, E., Wang, W., & Pandit, A. (2013). GDNF gene delivery via a 2-(dimethylamino)ethyl methacrylate based cyclized knot polymer for neuronal cell applications. ACS Chemical Neuroscience, 4(4), 540-546.
CrossrefPubMedPMCGoogle Scholar

19. Paiuk, O., Mitina, N., Slouf, M., Pavlova, E., Finiuk, N., Kinash, N., Karkhut, A., Manko, N., Gromovoy, T., Hevus, O., Shermolovich, Y., Stoika, R., & Zaichenko, A. (2019). Fluorine-containing block/branched polyamphiphiles forming bioinspired complexes with biopolymers. Colloids and Surfaces B: Biointerfaces, 174, 393-400.
CrossrefPubMedGoogle Scholar

20. Plamper, F.A., Synatschke, C.V., Majewski, A.P., Schmalz, A., Schmalz, H., & Müller, A.H.E. (2014). Star-shaped poly[2-(dimethylamino)ethyl methacrylate]and its derivatives: toward new propertiesand applications. Polimery, 59, 66-73.
CrossrefGoogle Scholar

21. Qian, Y., Zha, Y., Feng, B., Pang, Z., Zhang, B., Sun, X., Ren, J., Zhang, C., Shao, X., Zhang, Q., & Jiang, X. (2013). PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Biomaterials, 34(8), 2117-2129.
CrossrefPubMedGoogle Scholar

22. Qiao, Y., Huang, Y., Qiu, C., Yue, X., Deng, L., Wan, Y., Xing, J., Zhang, C., Yuan, S., Dong, A., & Xu, J. (2010). The use of PEGylated poly [2-(N,N-dimethylamino) ethyl methacrylate] as a mucosal DNA delivery vector and the activation of innate immunity and improvement of HIV-1-specific immune responses. Biomaterials, 31(1), 115-123.
CrossrefPubMedGoogle Scholar

23. Robbens, J., Vanparys, C., Nobels, I., Blust, R., Van Hoecke, K., Janssen, C., De Schamphelaere, K., Roland, K., Blanchard, G., Silvestre, F., Gillardin, V., Kestemont, P., Anthonissen, R., Toussaint, O., Vankoningsloo, S., Saout, C., Alfaro-Moreno, E., Hoet, P., Gonzalez, L., Dubruel, P., & Troisfontaines, P. (2010). Eco-, geno- and human toxicology of bio-active nanoparticles for biomedical applications. Toxicology, 269(2-3), 170-181.
CrossrefPubMedGoogle Scholar

24. Shi, B., Zheng, M., Tao, W., Chung, R., Jin, D., Ghaffari, D., & Farokhzad, O.C. (2017). Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems. Biomacromolecules, 18(8), 2231-2246.
CrossrefPubMedGoogle Scholar

25. Suk, J.S., Xu, Q., Kim, N., Hanes, J., & Ensign, L.M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99, 28-51.
CrossrefPubMedPMCGoogle Scholar

26. Thotakura, N., Parashar, P., & Raza, K. (2021). Assessing the pharmacokinetics and toxico­logy of polymeric micelle conjugated therapeutics. Expert Opinion on Drug Metabolism & Toxicology, 17(3), 323-332.
CrossrefPubMedGoogle Scholar

27. Tomlinson, E., & Rolland A.P. (1996). Controllable gene therapy: pharmaceutics of non-viral gene delivery systems. Journal of Controlled Release, 39, 357-72.
CrossrefGoogle Scholar

28. Zaichenko, A., Mitina, N., Shevchuk, O., Rayevska, K., Lobaz, V., Skorokhoda, T., & Stoika, R. (2008). Development of novel linear, block and branched oligoelectrolytes and functionally targeting nanoparticles. Pure and Applied Chemistry, 80(11), 2309-2326.
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 N. S. Finiuk, N. E. Mitina, O. V. Lobachevska, A. S. Zaichenko, R. S. Stoika

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.