INHIBITOR OF PROTEIN KINASES 1-(4-CHLOROBENZYL)-3-CHLORO-4-(3-TRIFLUOROMETHYLPHENYLAMINO)-1H-PYRROLE-2,5-DIONE INDUCES DNA DAMAGE AND APOPTOSIS IN HUMAN COLON CARCINOMA CELLS

N. S. Finiuk, O. Yu. Klyuchivska, H. M. Kuznietsova, S. P. Vashchuk, V. K. Rybalchenko, R. S. Stoika


DOI: http://dx.doi.org/10.30970/sbi.1404.636

Abstract


Background. The heterocyclic scaffolds are in the list of key structural blocks used at synthesis of novel biologically active compounds.
Materials and Methods. The present study addressed the evaluation of the mecha­nisms of the DNA damaging and pro-apoptotic actions in vitro of the maleimide derivative 1-(4-chlorobenzyl)-3-chloro-4-(3-trifluoromethylphenylamino)-1Н-pyrrole-2,5-dione (MI-1) targeting human colon carcinoma cells of HCT116 line. The Western-blot analysis was used to study changes in apoptosis-associated proteins, DNA comet assay under alkaline conditions was applied for evaluation of the DNA-damaging events, and Barton’s assay with diphenylamine was applied for measuring the level of DNA fragmentation in human colon carcinoma cells treated with MI-1 compound.
Results. The results of the Western-blot analysis demonstrated that MI-1 induced the apoptosis in HCT116 cells via mitochondria-dependent pathway. It activated caspase 3 via its cleavage in the treated human colon carcinoma cells. Besides, MI-1 increased the content of mitochondria-specific proteins: endonuclease G (EndoG) and the pro-apoptotic cytosolic protein protease-activating factor 1 (Apaf1). At the same time, MI-1 reduced the level of the anti-apoptotic Bcl-2 protein in HCT116 cells. The DNA comet analysis under alkaline conditions of the targeted human colon carcinoma cells of HCT116 line demonstrated that MI-1 induced DNA single-strand breaks in line with the olive tail moment of 13.2. The results of the colorimetric diphenylamine assay in HCT116 cells have shown that cell treatment with MI-1 increased the content of fragmented DNA to 14.2 %.
Conclusions. The anti-proliferative action of MI-1 in human colon carcinoma cells of HCT116 line is associated with apoptosis induction via mitochondria-dependent pathway, as well as the DNA damage through single-strand breaks and DNA fragmentation. These data suggest that the 1-(4-chlorobenzyl)-3-chloro-4-(3-trifluoromethylpheny­l­amino)-1Н-pyrrole-2,5-dione (MI-1) might be a promising agent for suppression of growth of colon tumor cells.


Keywords


1Н-pyrrole-2,5-diones, apoptosis, Western-blot assay, comet assay, single-strand breaks, Barton’s assay, DNA fragmentation

Full Text:

PDF

References


1. An W., Lai H., Zhang Y., Liu M., Lin X., Cao S. Apoptotic pathway as the therapeutic target for anticancer traditional chinese medicines. Frontiers in Pharmacology, 2019; 10: 758.
CrossrefPubMedPMCGoogle Scholar

2. Arora S., Tandon S. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells. Homeopathy, 2015; 104(1): 36-47.
CrossrefPubMedGoogle Scholar

3. Bao H., Zhang Q., Zhu Z., Xu H., Ding F., Wang M., Du S., Du Y., Yan Z. BHX, a novel pyrazo­line derivative, inhibits breast cancer cell invasion by reversing the epithelial-mesen­chymal transition and down-regulating Wnt/β-catenin signalling. Scientific Reports, 2017; 7(1): 9153.
CrossrefPubMedPMCGoogle Scholar

4. Basnakian A.G., Apostolov E.O., Yin X., Abiri S.O., Stewart A.G., Singh A.B., Shah S.V. Endo­nuclease G promotes cell death of non-invasive human breast cancer cells. Experimental Cell Research, 2006; 312(20): 4139-4149.
CrossrefPubMedPMCGoogle Schola

5. Campbell K.J., Tait S. Targeting BCL-2 regulated apoptosis in cancer. Open Biology, 2018; 8(5): 180002.
CrossrefPubMedPMCGoogle Scholar

6. Dubinina G., Golovach S., Kozlovsky V., Tolmachov A.O., Volovenko Yu.M. Antiproliferative action of the new derivatives of l-(4-R-benzyl)-3-R1-4-(R2-phenylamino)-1H-pyrrol-2,5-dione. Journal of Organic and Pharmaceutical Chemistry, 2007; 5(1): 39-49. (In Ukrainian)
Google Scholar

7. Dubinina G.G., Chupryna O.O., Platonov M.O., Borisko P.O., Ostrovska G.V., Tolmachov A.O., Shtil A.A. In silico design of protein kinase inhibitors: successes and failures. Anti-Cancer Agents in Medicinal Chemistry, 2007; 7(2): 171-188.
CrossrefPubMedGoogle Scholar

8. Feng N., Luo J., Guo X. Silybin suppresses cell proliferation and induces apoptosis of multiple myeloma cells via the PI3K/Akt/mTOR signaling pathway. Molecular Medicine Reports, 2016; 13: 3243-3248.
CrossrefPubMedGoogle Scholar

9. Finiuk N., Klyuchivska O., Ivasechko I., Hreniukh V., Ostapiuk Y., Shalai Y., Panchuk R., Matiychuk V., Obushak M., Stoika R., Babsky A. Proapoptotic effects of novel thiazole derivative on human glioma cells. Anti-Cancer Drugs, 2019; 30(1): 27-37.
CrossrefPubMedGoogle Scholar

10. Finiuk N.S., Ivasechko I.I., Klyuchivska O.Yu., Kuznietsova H.M., Rybalchenko V.K., Stoika R.S. Cytotoxic action of maleimide derivative 1-(4-Cl-benzyl)-3-chloro-4-(CF(3)-phenylamino)-1H-pyrrole-2,5-dione toward mammalian tumor cells and its capability to interact with DNA. The Ukrainian Biochemical Journal, 2020; 92(4): 55-62.
Crossref

11. Finiuk N.S., Ivasechko I.I., Klyuchivska O.Yu., Ostapiuk Yu.V., Hreniukh V.P., Shalai Ya.R., Matiychuk V.S., Obushak M.D., Babsky A.M., Stoika R.S. Apoptosis induction in human leukemia cells by novel 2-amino-5-benzylthiazole derivatives. The Ukrainian Biochemical Journal, 2019; 91(2): 29-39.
CrossrefGoogle Scholar

12. Hsu C.C., Tseng L.M., Lee H.C. Role of mitochondrial dysfunction in cancer progression. Experimental Biology and Medicine, 2016; 241(12): 1281-1295.
CrossrefPubMedPMCGoogle Scholar

13. Jain C.K., Majumder H.K., Roychoudhury S. Natural compounds as anticancer agents targe­ting DNA topoisomerases. Current Genomics, 2017; 18(1): 75-92.
CrossrefPubMedPMCGoogle Scholar

14. Jiang Z.Q., Li M.H., Qin Y.M., Jiang H.Y., Zhang X., Wu M.H. Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of MicroRNA-34a-5p. International Journal of Molecular Sciences, 2018; 19(2): 447.
CrossrefPubMedPMCGoogle Scholar

15. Kale M., Sonwane G., Nawale R., Mourya V. Molecular modeling studies on some important anticancer heterocycles: an overview. Current Computer-Aided Drug Design, 2018; 14(3): 178-190.
CrossrefPubMedGoogle Scholar

16. Khan M., Maryam A., Qazi J.I., Ma T. Targeting apoptosis and multiple signaling pathways with icariside II in cancer cells. International Journal of Biological Sciences, 2015; 11: 1100-1112.
CrossrefPubMedPMCGoogle Scholar

17. Kuznietsova H.M., Lynchak O.V., Danylov M.O., Kotliar I.P., Rybalchenko V.K. Effect of dihydropyrrol and maleimide derivatives on the state of liver and colon in normal rats and those with colorectal carcinogenesis induced by dimethylhydrazine. The Ukrainian Biochemical Journal, 2013; 85(3): 74-84.
CrossrefPubMedGoogle Scholar

18. Kuznietsova H.M., Yena M.S., Kotlyar I.P., Ogloblya O.V., Rybalchenko V.K. Anti-inflammatory effects of protein kinase inhibitor pyrrol derivate. The Scientific World Journal, 2016; 2016: 2145753.
CrossrefPubMedPMCGoogle Scholar

19. Lang D.K., Kaur R., Arora R., Saini B., Arora S. Nitrogen containing heterocycles as anticancer agents: an overview. Anti-Cancer Agents in Medicinal Chemistry, 2020; 20(18): 2150-2168.
CrossrefPubMedGoogle Scholar

20. Liao W., McNutt M.A., Zhu W.G. The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods, 2009; 48(1): 46-53.
CrossrefPubMedGoogle Scholar

21. Lu M., Wang Y., Zhan X. The MAPK pathway-based drug therapeutic targets in pituitary ade­nomas. Frontiers in Endocrinology, 2019; 10: 330.
CrossrefPubMedPMCGoogle Scholar

22. Lu Y., Liu Y., Yang C. Evaluating in vitro DNA damage using comet assay. Journal of Visualized Experiments, 2017; 128: 56450.
CrossrefPubMedPMCGoogle Scholar

23. Mahmood T., Yang P.C. Western blot: technique, theory, and trouble shooting. North American Journal of Medical Sciences, 2012; 4(9): 429-434.
CrossrefPubMedPMCGoogle Scholar

24. Martins P., Jesus J., Santos S, Raposo L.R., Roma-Rodrigues C., Baptista P.V., Fernandes A.R. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine's tool box. Molecules, 2015; 20(9): 16852-16891.
CrossrefPubMedPMCGoogle Scholar

25. McIlwain D.R., Berger T., Mak T.W. Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 2013; 5(4): a008656.
CrossrefPubMedPMCGoogle Scholar

26. Mitra S., Nguyen L.N., Akter M., Park G., Choi E.H., Kaushik N.K. Impact of ROS generated by chemical, physical, and plasma techniques on cancer attenuation. Cancers, 2019; 11(7): 1030.
CrossrefPubMedPMCGoogle Scholar

27. Ngoi N., Choong C., Lee J., Bellot G., Wong A., Goh B.C., Pervaiz S. Targeting mitochondrial apoptosis to overcome treatment resistance in cancer. Cancers, 2020; 12(3): 574.
CrossrefPubMedPMCGoogle Scholar

28. Pat. 22204 UA. Compound of 1,4-disubstituted 5-amino-1,2-dihydropyrrole-3-one having anticancer activity. Dubinina G.G., Volovenko Yu.M. Publ. 25.04.2007.

29. Pfeffer C.M., Singh A.T.K. Apoptosis: A target for anticancer therapy. International Journal of Molecular Sciences, 2018; 19(2): 448.
CrossrefPubMedPMCGoogle Scholar

30. Pistritto G., Trisciuoglio D., Ceci C., Garufi A., D'Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 2016; 8(4): 603-619.
CrossrefPubMedPMCGoogle Scholar

31. Wu H., Medeiros L.J., Young K.H. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Reviews, 2018; 32(1): 8-28.
CrossrefPubMedGoogle Scholar

32. Yoshida H., Kong Y.Y., Yoshida R., Elia A.J., Hakem A., Hakem R., Penninger J.M., Mak T.W. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell, 1998; 94(6): 739-750.
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Studia Biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.