THE EFFECT OF ROUNDUP ON THE BIVALVE UNIO TUMIDUS MOLLUSK UTILIZING EX VIVO APPROACH
DOI: http://dx.doi.org/10.30970/sbi.1401.614
Abstract
Glyphosate is the worldwide used herbicide of the first priority. However, its biochemical effects in the aquatic animals are studied scantly. The ex vivo approach has been recently proposed to provide the express evaluation of the adverse impact without the treating of the organisms. The aim of this study was to verify this approach for the assessment of the toxicity of glyphosate to the bivalve mollusk. The samples of the gills and digestive gland tissues of freshwater bivalve Unio tumidus mollusk were exposed to a range of the concentrations of glyphosate (commercial formulation Roundup MAX) at the concentrations 13.3, 26.7, 66.8 and 133.6 µg×L-1 during 2 h at 20 °C followed by 15 h at ~ 2–4o C. The markers of oxidative injury (total antioxidant activity, end-products of lipid peroxidation (TBARS) and protein carbonyls (PC)), cellular low weight thiols GSH/GSSG and metallothionein (MT), and cholinesterase activity as the index of neurotoxicity were analyzed. We also assayed the index of cell vitality as the lysosomal membrane stability from the Neutral Red Retention (NRR) test. The results have shown that the lowest concentrations of glyphosate caused the most prominent changes of the indices: the decrease of MT concentration (by ~ two times) and cholinesterase activity. The total antioxidant activity was decreased substantially in all exposures correspondingly to a decrease of the MT and/or GSH concentrations. However, the levels of TBARS and PC were not changed comparing to control detecting the early stage of the injury. Surprisingly, NRR increased in the exposures to higher concentrations of glyphosate, probably due to strong chelating ability of glyphosate or other compounds of formulation. This study allows us to detect the earlier biological effects of glyphosate in the low environmentally realistic concentrations. Further validation of this approach needs the comparison of the results in the ex vivo and in vivo experiments.
Keywords
Full Text:
PDFReferences
1. Appelqvist H., Sandin L., Björnström K., Saftig P., Garner B., Öllinger K., Kаgedal K. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PloS Оne, 2012; 7(11): e50262. Crossref ● PubMed ● Google Scholar | ||||
| ||||
2. Akcha F., Spagnol C., Rouxel J. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos. Aquat. Toxicol., 2012; 106: 104-113. Crossref ● PubMed ● Google Scholar | ||||
| ||||
3. Anderson M.E. Determination of glutathione and glutathione disulfide in biological samples. Meth. Enzymol, 1985; 113: 548-555. Crossref ● Google Scholar | ||||
| ||||
4. Annett R., Habibi H.R., Hontela A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol., 2014; 34(5): 458-479. Crossref ● PubMed ● Google Scholar | ||||
| ||||
5. Beltran K.S., Pocsidio G.N. Acetylcholinesterase activity in Corbicula fluminea Mull., as a biomarker of organophosphate pesticide pollution in Pinacanauan River, Philippines. Environ. Monit. Assess., 2010; 165: 331-340. Crossref ● PubMed ● Google Scholar | ||||
| ||||
6. Bianco K., Yusseppone M.S., Otero S., Luquet C., de Molina M.D.C.R., Kristoff G. Cholinesterases and neurotoxicity as highly sensitive biomarkers for an organophosphate insecticide in a freshwater gastropod (Chilina gibbosa) with low sensitivity carboxylesterases. Aquat. Toxicol., 2013; 144: 26-35. Crossref ● PubMed ● Google Scholar | ||||
| ||||
7. Carles L., Gardon H., Joseph L., Sanchís J., Farre, M., Artigas J. Meta-analysis of glyphosate contamination in surface waters and dissipation by biofilms. Environ. Int., 2019; 124: 284-293. Crossref ● PubMed ● Google Scholar | ||||
| ||||
8. Czarnota M., & Thomas P.A. Using surfactants, wetting agents, and adjuvants in the greenhouse. University of Georgia J., 2010. URL: http://hdl.handle.net/10724/12373 | ||||
| ||||
9. Ellman G.L., Courtney K.D., Andres V.J., & Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961; 7(2): 88-95. Crossref ● Google Scholar | ||||
| ||||
10. Falfushynska H., Gnatyshyna L., Stoliar O. In situ exposure history modulates the molecular responses to carbamate fungicide Tattoo in bivalve mollusk. Ecotoxicology, 2013; 22 (3): 433-445. Crossref ● PubMed ● Google Scholar | ||||
| ||||
11. Fent K. Fish cell lines as versatile tools in ecotoxicology: assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples. Toxicol. In Vitro, 2001; 15(4-5): 477-488. Crossref ● Google Scholar | ||||
| ||||
12. Fiser B., Jójárt B., Csizmadia I.G., Viskolcz B. Glutathione - hydroxyl radical interaction: a theoretical study on radical recognition process. PLOS ОNE, 2013; 8(9). Crossref ● PubMed ● Google Scholar | ||||
| ||||
13. Giuliani M.E., Sparaventi E., Lanzoni I., Pittura L., Regoli F., Gorbi S. Precision-Cut Tissue Slices (PCTS) from the digestive gland of the Mediterranean mussel Mytilus galloprovincialis: An ex vivo approach for molecular and cellular responses in marine invertebrates. Toxicol. In Vitro, 2019; 61. Crossref ● PubMed ● Google Scholar | ||||
| ||||
14. Gnatyshyna L., Falfushynska H., Mykhalska V., Mischuk N., Stoliar O. Multi-marker study of the response of bivalve mollusk Unio tumidus induced by the compounds of typical municipal effluents. Studia Biologica, 2017; 11(2), 37-44. Crossref ● Google Scholar | ||||
| ||||
15. Gnatyshyna L., Khoma V. , Horyn O., Ozoliņš D., Skuja A., Kokorite I., Rodinov V., Martyniuk V., Spriņģe G., Stoliar O. Multi-marker study of Dreissena polymorpha populations from hydropower plant reservoir and natural lake in Latvia. Turk. J. Fish.& Aquat. Sci., 2020; 20(6): 409-420. Crossref ● Google Scholar | ||||
| ||||
16. Gnatyshyna L., Khoma V., Mishchuk O., Martinyuk V., Spriņģe G., & Stoliar O. Multi-marker study of the responses of the Unio tumidus from the areas of small and micro hydropower plants at the Dniester River Basin, Ukraine. Environ. Sci. Pollut. Res., 2020; 1-12. Crossref ● PubMed ● Google Scholar | ||||
| ||||
17. Haj E.I.Y., Bohn S., Souza M.M. Tolerance of native and invasive bivalves under herbicide and metal contamination: an ex vivo approach. Environ. Sci. Pollut. Res., 2019; 30: 31198-31206. Crossref ● PubMed ● Google Scholar | ||||
| ||||
18. Matozzo V., Fabrello J., Masiero L., Ferraccioli F., Finos L., Pastore P., Di Gangi I.M., Bogialli S. Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: a case study with the mussel Mytilus galloprovincialis. Environ. Pollut., 2018; 233: 623-632. Crossref ● PubMed ● Google Scholar | ||||
| ||||
19. Mensah P.K., Palmer C.G., Odume O.N. Ecotoxicology of glyphosate and glyphosate-based herbicides-toxicity to wildlife and humans. In: Larramendy M.L., Soloneski S. (Ed.) Toxicity and Hazard of Agrochemicals. InteachOpen, 2015: 93-111. Crossref ● Google Scholar | ||||
| ||||
20. Mertens M., Höss S., Neumann G., Afzal J., Reichenbecher W. Glyphosate, a chelating agent-relevant for ecological risk assessment? Environ. Sci. Pollut. Res., 2018; 25(6): 5298-5317. Crossref ● PubMed ● Google Scholar | ||||
| ||||
21. Ohkawa H., Ohishi N., Tagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979; 95: 351-358. Crossref ● Google Scholar | ||||
| ||||
22. Pala A. The effect of a glyphosate-based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex (Crustacean). Environ. Sci. Pollut. Res., 2019; 26: 36869-36877. Crossref ● PubMed ● Google Scholar | ||||
| ||||
23. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999; 26(9-10): 1231-1237. Crossref ● Google Scholar | ||||
| ||||
24. Reznick A. Z., Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Meth. Enzymol., 1994; 233: 357-363. Crossref ● Google Scholar | ||||
| ||||
25. Séguin A., Mottier A., Perron C., Lebel J.M., Serpentini A., Costil K. Sub-lethal effects of a glyphosate-based commercial formulation and adjuvants on juvenile oysters (Crassostrea gigas) exposed for 35 days. Mar. Pollut. Bull., 2017; 117(1-2): 348-358. Crossref ● PubMed ● Google Scholar | ||||
| ||||
26. Torretta V., Katsoyiannis I.A., Viotti P., Rada E.C. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability, 2018; 10(4): 950-970. Crossref ● Google Scholar | ||||
| ||||
27. Tung L., Troiano G.C., Sharma V., Raphael R.M., Stebe K.J. Changes in electroporation thresholds of lipid membranes by surfactants and peptides. Ann. N. Y. Acad. Sci., 1999; 888(1): 249-265. Crossref ● PubMed ● Google Scholar | ||||
| ||||
28. Vehovszky Á., Farkas A., Csikós V., Székács A., Mörtl M., Győri J. Neonicotinoid insecticides are potential substrates of the multixenobiotic resistance (MXR) mechanism in the non-target invertebrate, Dreissena sp. Aquat. Toxicol., 2018; 205: 148-155. Crossref ● PubMed ● Google Scholar | ||||
| ||||
29. Viarengo A., Burlando B., Dondero F. Metallothionein as a tool in biomonitoring programmes. Biomarkers, 1999; 4: 455-466. Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 V. V. Khoma, V. V. Martinyuk, T. R. Mackiv, L. L. Gnatyshyna, G. Spriņģe, O. B. Stoliar
This work is licensed under a Creative Commons Attribution 4.0 International License.