THE EFFECT OF ROUNDUP ON THE BIVALVE UNIO TUMIDUS MOLLUSK UTILIZING EX VIVO APPROACH

V. V. Khoma, V. V. Martinyuk, T. R. Mackiv, L. L. Gnatyshyna, G. Spriņģe, O. B. Stoliar


DOI: http://dx.doi.org/10.30970/sbi.1401.614

Abstract


Glyphosate is the worldwide used herbicide of the first priority. However, its biochemical effects in the aquatic animals are studied scantly. The ex vivo approach has been recently proposed to provide the express evaluation of the adverse impact without the treating of the organisms. The aim of this study was to verify this approach for the assessment of the toxicity of glyphosate to the bivalve mollusk. The samples of the gills and digestive gland tissues of freshwater bivalve Unio tumidus mollusk were exposed to a range of the concentrations of glyphosate (commercial formulation Roundup MAX) at the concentrations 13.3, 26.7, 66.8 and 133.6 µg×L-1 during 2 h at 20 °C followed by 15 h at ~ 2–4o C. The markers of oxidative injury (total antioxidant activity, end-products of lipid peroxidation (TBARS) and protein carbonyls (PC)), cellular low weight thiols GSH/GSSG and metallothionein (MT), and cholinesterase activity as the index of neurotoxicity were analyzed. We also assayed the index of cell vitality as the lysosomal membrane stability from the Neutral Red Retention (NRR) test. The results have shown that the lowest concentrations of glyphosate caused the most prominent changes of the indices: the decrease of MT concentration (by ~ two times) and cholinesterase activity. The total antioxidant activity was decreased substantially in all exposures correspon­dingly to a decrease of the MT and/or GSH concentrations. However, the levels of TBARS and PC were not changed comparing to control detecting the early stage of the injury. Surprisingly, NRR increased in the exposures to higher concentrations of glyphosate, probably due to strong chelating ability of glyphosate or other compounds of formulation. This study allows us to detect the earlier biological effects of glyphosate in the low environmentally realistic concentrations. Further validation of this approach needs the comparison of the results in the ex vivo and in vivo experiments.


Keywords


Roundup, bivalve mollusk, cytotoxicity, ex vivo

Full Text:

PDF

References


1. Appelqvist H., Sandin L., Björnström K., Saftig P., Garner B., Öllinger K., Kаgedal K. Sensiti­vity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PloS Оne, 2012; 7(11): e50262.
CrossrefPubMedGoogle Scholar

2. Akcha F., Spagnol C., Rouxel J. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos. Aquat. Toxicol., 2012; 106: 104-113.
CrossrefPubMedGoogle Scholar

3. Anderson M.E. Determination of glutathione and glutathione disulfide in biological samples. Meth. Enzymol, 1985; 113: 548-555.
CrossrefGoogle Scholar

4. Annett R., Habibi H.R., Hontela A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol., 2014; 34(5): 458-479.
CrossrefPubMedGoogle Scholar

5. Beltran K.S., Pocsidio G.N. Acetylcholinesterase activity in Corbicula fluminea Mull., as a biomarker of organophosphate pesticide pollution in Pinacanauan River, Philippines. Environ. Monit. Assess., 2010; 165: 331-340.
CrossrefPubMedGoogle Scholar

6. Bianco K., Yusseppone M.S., Otero S., Luquet C., de Molina M.D.C.R., Kristoff G. Cholinesterases and neurotoxicity as highly sensitive biomarkers for an organophosphate insecticide in a freshwater gastropod (Chilina gibbosa) with low sensitivity carboxylesterases. Aquat. Toxicol., 2013; 144: 26-35.
CrossrefPubMedGoogle Scholar

7. Carles L., Gardon H., Joseph L., Sanchís J., Farre, M., Artigas J. Meta-analysis of glyphosate contamination in surface waters and dissipation by biofilms. Environ. Int., 2019; 124: 284-293.
CrossrefPubMedGoogle Scholar

8. Czarnota M., & Thomas P.A. Using surfactants, wetting agents, and adjuvants in the greenhouse. University of Georgia J., 2010.
URL: http://hdl.handle.net/10724/12373

9. Ellman G.L., Courtney K.D., Andres V.J., & Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961; 7(2): 88-95.
CrossrefGoogle Scholar

10. Falfushynska H., Gnatyshyna L., Stoliar O. In situ exposure history modulates the molecular responses to carbamate fungicide Tattoo in bivalve mollusk. Ecotoxicology, 2013; 22 (3): 433-445.
CrossrefPubMedGoogle Scholar

11. Fent K. Fish cell lines as versatile tools in ecotoxicology: assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples. Toxicol. In Vitro, 2001; 15(4-5): 477-488.
CrossrefGoogle Scholar

12. Fiser B., Jójárt B., Csizmadia I.G., Viskolcz B. Glutathione - hydroxyl radical interaction: a theoretical study on radical recognition process. PLOS ОNE, 2013; 8(9).
CrossrefPubMedGoogle Scholar

13. Giuliani M.E., Sparaventi E., Lanzoni I., Pittura L., Regoli F., Gorbi S. Precision-Cut Tissue Slices (PCTS) from the digestive gland of the Mediterranean mussel Mytilus galloprovincialis: An ex vivo approach for molecular and cellular responses in marine invertebrates. Toxicol. In Vitro, 2019; 61.
CrossrefPubMedGoogle Scholar

14. Gnatyshyna L., Falfushynska H., Mykhalska V., Mischuk N., Stoliar O. Multi-marker study of the response of bivalve mollusk Unio tumidus induced by the compounds of typical municipal effluents. Studia Biologica, 2017; 11(2), 37-44.
CrossrefGoogle Scholar

15. Gnatyshyna L., Khoma V. , Horyn O., Ozoliņš D., Skuja A., Kokorite I., Rodinov V., Martyniuk V., Spriņģe G., Stoliar O. Multi-marker study of Dreissena polymorpha populations from hydro­power plant reservoir and natural lake in Latvia. Turk. J. Fish.& Aquat. Sci., 2020; 20(6): 409-420.
CrossrefGoogle Scholar

16. Gnatyshyna L., Khoma V., Mishchuk O., Martinyuk V., Spriņģe G., & Stoliar O. Multi-marker study of the responses of the Unio tumidus from the areas of small and micro hydropower plants at the Dniester River Basin, Ukraine. Environ. Sci. Pollut. Res., 2020; 1-12.
CrossrefPubMedGoogle Scholar

17. Haj E.I.Y., Bohn S., Souza M.M. Tolerance of native and invasive bivalves under herbicide and metal contamination: an ex vivo approach. Environ. Sci. Pollut. Res., 2019; 30: 31198-31206.
CrossrefPubMedGoogle Scholar

18. Matozzo V., Fabrello J., Masiero L., Ferraccioli F., Finos L., Pastore P., Di Gangi I.M., Bogialli S. Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: a case study with the mussel Mytilus galloprovincialis. Environ. Pollut., 2018; 233: 623-632.
CrossrefPubMedGoogle Scholar

19. Mensah P.K., Palmer C.G., Odume O.N. Ecotoxicology of glyphosate and glyphosate-based herbicides-toxicity to wildlife and humans. In: Larramendy M.L., Soloneski S. (Ed.) Toxicity and Hazard of Agrochemicals. InteachOpen, 2015: 93-111.
CrossrefGoogle Scholar

20. Mertens M., Höss S., Neumann G., Afzal J., Reichenbecher W. Glyphosate, a chelating agent-relevant for ecological risk assessment? Environ. Sci. Pollut. Res., 2018; 25(6): 5298-5317.
CrossrefPubMedGoogle Scholar

21. Ohkawa H., Ohishi N., Tagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979; 95: 351-358.
CrossrefGoogle Scholar

22. Pala A. The effect of a glyphosate-based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex (Crustacean). Environ. Sci. Pollut. Res., 2019; 26: 36869-36877.
CrossrefPubMedGoogle Scholar

23. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999; 26(9-10): 1231-1237.
CrossrefGoogle Scholar

24. Reznick A. Z., Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Meth. Enzymol., 1994; 233: 357-363.
CrossrefGoogle Scholar

25. Séguin A., Mottier A., Perron C., Lebel J.M., Serpentini A., Costil K. Sub-lethal effects of a glyphosate-based commercial formulation and adjuvants on juvenile oysters (Crassostrea gigas) exposed for 35 days. Mar. Pollut. Bull., 2017; 117(1-2): 348-358.
CrossrefPubMedGoogle Scholar

26. Torretta V., Katsoyiannis I.A., Viotti P., Rada E.C. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability, 2018; 10(4): 950-970.
CrossrefGoogle Scholar

27. Tung L., Troiano G.C., Sharma V., Raphael R.M., Stebe K.J. Changes in electroporation thresholds of lipid membranes by surfactants and peptides. Ann. N. Y. Acad. Sci., 1999; 888(1): 249-265.
CrossrefPubMedGoogle Scholar

28. Vehovszky Á., Farkas A., Csikós V., Székács A., Mörtl M., Győri J. Neonicotinoid insecticides are potential substrates of the multixenobiotic resistance (MXR) mechanism in the non-target invertebrate, Dreissena sp. Aquat. Toxicol., 2018; 205: 148-155.
CrossrefPubMedGoogle Scholar

29. Viarengo A., Burlando B., Dondero F. Metallothionein as a tool in biomonitoring programmes. Biomarkers, 1999; 4: 455-466.
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 V. V. Khoma, V. V. Martinyuk, T. R. Mackiv, L. L. Gnatyshyna, G. Spriņģe, O. B. Stoliar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.