REDUCTION OF SULFATE, NITRATE AND NITRITE IONS BY DESULFOVIBRIO SP. UNDER THE INFLUENCE OF FERRUM (III) CITRATE
DOI: http://dx.doi.org/10.30970/sbi.1401.607
Abstract
The influence of ferrum (III) citrate added to the cultivation medium, on the reduction of sulfate, nitrate, and nitrite ions by sulfate-reducing bacteria Desulfovibrio desulfuricans IMV K-6, Desulfovibrio sp. Yav-6, and Desulfovibrio sp. Yav-8 isolated from Yavorivske Lake was studied. It was established that ferrum (III) citrate inhibits the biomass accumulation, SO42- reduction, and H2S production by the bacteria after addition of 1.74–3.47 mM Na2SO4×10 H2O and 1.74–10.41 mM FeC6H5O7 to the medium, in comparison with the growth and level of the reduction of sulfate ions by bacteria in the medium supplemented with only Na2SO4×10 H2O. At conditions of the bacteria cultivation in the presence of an equimolar amount (3.47 mM) of Na2SO4×10 H2O and FeC6H5O7, they reduced 2.5−2.7 times more Fe(ІІІ) than SO42- with Fe2+ production at a concentration 2.4−2.7 times greater than H2S. FeC6H5O7 inhibited growth, NO3- or NO2- reduction and NH4+ production by the bacteria in the presence of 1.74−3.47 mM NaNO3 or NaNO2 and 1.74−10.41 mM FeC6H5O7 in the medium, compared to the growth and level of nitrate or nitrite ions reduction in the medium with only NaNO3 or NaNO2. In the medium with the same initial content of 3.47 mM NaNO3 and 3.47 mM FeC6H5O7, the bacteria reduced 1.4 times more NO3- than Fe(ІІІ), with NH4+ production at concentration 1.1 times higher than that of Fe2+. In the medium with 3.47 mM NaNO2 and 3.47 mM FeC6H5O7, the cells reduced 1.4−1.6 times more Fe(ІІІ) than NO2-, with Fe2+ production at concentration 1.5−1.6 times higher than NH4+. Ferrum (III) citrate had more inhibitory effect on the dissimilatory reduction of sulfate by the bacteria than of nitrate and nitrite ions, since the SO42- reduction by the bacteria at its presence in the medium decreased 2.0−4.7 times. The reduction of NO3- and NO2- decreased only 1.3−1.9 and 1.7−3.1 times, respectively, as compared with their reduction in the media with only Na2SO4×10 H2O, NaNO3 or NaNO2. Despite the fact that the reduction by cells of 1.74−10.41 mM Fe(III) in the media with Na2SO4×10 H2O, NaNO3 or NaNO2 decreased 1.1−2.1, 1.6−2.7 and 1.1−2.5 times, respectively, compared with its reduction in the medium with only FeC6H5O7. The investigated strains of bacteria were resistant to high concentrations of ferrum (III) citrate and, therefore, can be applied in the technologies of complex environment purification from pollution with ferrum, sulfur, and nitrogen compounds.
Keywords
Full Text:
PDFReferences
1. Abdulina D.R. Purish L.M., Iutynska G.O. Microbial communities and sulfate-reducing bacteria in soils near main-gas pipeline. Microbiol. Zhurn., 2018; 80(5): 3-14. Crossref ● Google Scholar | ||||
| ||||
2. Barton L.L., Tomei-Torres F.A., Xu H., Zocco T. Metabolism of metals and metalloids by the sulfate-reducing bacteria. In: D. Saffarini (Ed.) Bacteria-metal interactions. Switzerland: Springer International Publishing, 2015. P. 57−83. Crossref ● Google Scholar | ||||
| ||||
3. Basniwal R.K., Singh N. J., Kumar M., Kumar V., Tuteja N., Varma A., Goyal P. Biotransformation of xenobiotic compounds: microbial approach. In: Hashmi M., Kumar V., Varma A. (Eds) Xenobiotics in the Soil Environment: Monitoring, Toxicity and Management. Springer: Cham, 2017; 49: 335−345. Crossref ● Google Scholar | ||||
| ||||
4. Bokranz M.J., Katz J., Schröder I., Roberton A.M., Kröger A. Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch. Microbiol., 1983; 135: 36-41. Crossref ● Google Scholar | ||||
| ||||
5. Breuer M., Rosso K.M., Blumberger J., Butt J.N. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J. R. Soc. Interface, 2015; 12(102): 20141117. Crossref ● PubMed ● Google Scholar | ||||
| ||||
6. Fitzgerald L.A., Petersen E.R., Leary D.H., Nadeau L.J., Soto C.M., Ray R.I., Little B.J., Ringeisen B.R., Johnson G.R., Vora G.J., Biffinger J.C. Shewanella frigidimarina microbial fuel cells and the influence of divalent cations on current output. Biosens. & Bioel., 2013; 40(1): 102-109. Crossref ● PubMed ● Google Scholar | ||||
| ||||
7. Gescher J., Kappler A. Microbial metal respiration: from geochemistry to potential applications. Berlin, Heidelberg: Springer-Verlag, 2012; 8. 236 p. Crossref ● Google Scholar | ||||
| ||||
8. Govorukha V.M., Havrylyuk O.A., Tashyrev O.B. Regularities of quantitative distribution for Fe(III)-reducing bacteria in natural ecosystems. Biotechnologia Acta, 2015; 8(3): 123−128. Crossref ● Google Scholar | ||||
| ||||
9. Gudz S.P., Нnatush S.O., Yavorska G.V., Bilinska I.S., Borsukevych B.M. Workshop on microbiology: textbook. Lviv: Ivan Franko Nac. Univ. of Lviv, 2014. 436 p. (In Ukrainian) | ||||
| ||||
10. Hnatush S., Maslovska O. Sulfur-reducing bacteria Desulfuromonas acetoxidans ІМV В-7384 under the influence of heavy metal ions. In: The Development of Natural Sciences. Riga, Latvia, Izdevnieciba: Baltija Publishing, 2018. P. 98−122. | ||||
| ||||
11. Keith S.M., Herbert R.A. Dissimilatory nitrate reduction by a strain of Desulfovibrio desulfuricans. FEMS Microbiol. Lett., 1983; 18(1-2): 55-59. Crossref ● Google Scholar | ||||
| ||||
12. Kiran M.G., Pakshirajan K., Das G. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization. Journal of Hazardous Materials, 2017; 324(PtA): 62−70. Crossref ● PubMed ● Google Scholar | ||||
| ||||
13. Kozlova I.P., Radchenko O.S., Stepura L.G., Kondratiuk T.O., Pilyashenko-Novochatnyi A.I. Geochemical activity of microorganisms and it practical aspects: textbook. Kyiv: Naukova Dumka, 2008. 526 p. (In Ukrainian) | ||||
| ||||
14. Kuznetsov A., Gradova N., Lushnikov S., Éngelkhart M., Vaysser T., Chebotareva M. Applied Ecobiotechnology. Moscow: Laboratoria znanij, BINOM, 2015; 2. 492 p. (In Russian) | ||||
| ||||
15. Lakyn G.F. Biometrics. Moscow: Vysshaya Shkola, 1990. 352 p. (In Russian) | ||||
| ||||
16. Lengeler J., Drevs G., Shlegel G. (Ed.) Contemporary Microbiology. Prokaryotes. Moscow: Mir, 2005; 1. 654 p. (In Russian) | ||||
| ||||
17. Li X., Dai L., Zhang C., Zeng G., Liu Y., Zhou C., Xu W., Wu Y., Tang X., Liu W., Lan S. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. J. Hazard. Mater., 2017; 324: 340-347. Crossref ● PubMed ● Google Scholar | ||||
| ||||
18. Li X., Lan S.M., Zhu Z.P., Zhang C., Zeng G.M., Liu Y.G., Cao W.C., Song B., Yang H., Wang S.F., Wu S.H. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: a review. Ecotoxicol. Environ. Saf., 2018; 158: 162-170. Crossref ● PubMed ● Google Scholar | ||||
| ||||
19. Lucana D., Wedderhoff I., Groves M. ROS-mediated signalling in bacteria: zinc-containing Cys-X-X-Cys redox centres and iron-based oxidative stress. J. Signal Transduct., 2012; 2012: 1-9. Crossref ● PubMed ● Google Scholar | ||||
| ||||
20. Mitchell G.J., Jones J.G., Cole J.A. Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Arch. Microbiol., 1986; 144 (1): 35-40. Crossref ● Google Scholar | ||||
| ||||
21. Morozkina E.V., Zvyagilskaya R.A. Nitrate reductases: structure, functions, and effect of stress factors. Biochemistry, 2007; 72(10): 1151-1161. Crossref ● PubMed ● Google Scholar | ||||
| ||||
22. Moroz O.M., Hnatush S.O., Bohoslavets Ch.I., Hrytsun' T.M., Borsukevych B.М. The influence of potassium dichromate on dissimilatory reduction of sulfate and nitrate ions by bacteria Desulfovibrio sp. Ecol. & Noospherol., 2017; 28(1−2): 84−95. (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
23. Moroz O., Hnatush S., Bohoslavets Ch., Yavorska G., Borsukevych B. Sulfate, nitrate and nitrite ions reduction by bacteria of Desulfovibrio genus under the influence of ferrum (ІІІ), chrome (VI) and manganese (ІV) compounds. Visn. Lviv. Univ. Ser. Biol., 2016; 71: 190−205. (In Ukrainian) | ||||
| ||||
24. Moroz O.M., Hnatush S.O., Tarabas O.V., Bohoslavets Ch.I., Yavorska G.V., Borsukevych B.M. Sulfidogenic activity of sulfate and sulfur reducing bacteria under the influence of metal compounds. Biosystems Diversity, 2018; 26(1): 3-10. (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
25. Moroz O.M. Metal salts influence on nitrates reduction by sulfate reducing bacteria. Studia Biologica, 2013; 7(2): 47-56. (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
26. Moroz O.M. Regularities of hydrogen sulfide production by sulfate reducing bacteria from water of Yavoriv sulfur deposit open pit. Nauk. Visn. Uzhgorod. Univ. Ser. Biol., 2010; 27: 56-63. (In Ukrainian) | ||||
| ||||
27. Papanikolaou G., Pantopoulos K. Iron metabolism and toxicity. Toxicol. Appl. Pharm., 2005; 202: 199-211. Crossref ● PubMed ● Google Scholar | ||||
| ||||
28. Peretyatko T.B., Halushka A.A., Gudz S.P. Usage of metals as the terminal electron acceptors by the sulfate-reducing bacteria. Studia Biologica, 2009; 3(3): 141-158. Crossref ● Google Scholar | ||||
| ||||
29. Peretyatko T.B., Gudz S.P. The ability of sulfate reducing bacteria Desulfovibrio desulfuricans Ya-11 and Desulfobacter sp. to use nitrate as electron acceptor. Studia Biologica, 2011; 5(2): 51-60. (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
30. Peretyatko T.B., Halushka A.A., Gudz S.P., Нnatush S.O. Certificate of deposition of bacteria Ya-11 (Desulfovibrio desulfuricans Ya-11 and Pseudomonas sp.) in the Depository of D.K. Zabolotny Institute of Microbiology and Virology of the NAS of Ukraine with appropriation of registration number IMV K-6. 2009. (In Ukrainian) | ||||
| ||||
31. Prokhorova A., Sturm-Richter K., Doetsch A., Gescher J. Resilience, dynamics and interactions within a multi-species exoelectrogenic model biofilm community. Appl. Environ. Microbiol., 2017; 83(6): e03033-e03016. Crossref ● PubMed | ||||
| ||||
32. Richter K., Schicklberger M., Gescher J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl. Environ. Microbiol., 2012; 78(4): 913-921. Crossref ● PubMed ● Google Scholar | ||||
| ||||
33. Sholiak K.V., Peretyatko T.B., Verkholyak N.S., Gudz S.P. Utilization of sulfate and nitrate by sulfate reducing bacteria Desulfomicrobium sp. CrR3 in the presence of bichromate in the medium. Studia Biologica, 2013; 7(3): 153-160. (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
34. Simonte F., Sturm G., Gescher J., Sturm-Richter K. Extracellular electron transfer and biosensors. In: Advances in Biochemical Engineering / Biotechnology. Berlin, Heidelberg: Springer, 2017: 1-24. Crossref ● PubMed ● Google Scholar | ||||
| ||||
35. Si Y., Zou Y., Liu X., Si X., Mao J. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere, 2015; 122: 206-212. Crossref ● PubMed ● Google Scholar | ||||
| ||||
36. Tarabas O., Moroz O., Hnatush S., Yavorska G., Zvir G., Kovalchuk M. Ecological trophic groups of microorganisms of Yavorivske Lake water. Visn. Lviv. Univ. Ser. Biol., 2017; 76: 166−178. (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
37. Teng Y., Xu Y., Wang X., Christie P. Function of biohydrogen metabolism and related microbial communities in environmental bioremediation. Front. Microbiol., 2019; 10 (106): 1-14. Crossref ● PubMed ● Google Scholar | ||||
| ||||
38. Viti C., Marchi E., Decorosi F., Giovannetti L. Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiol. Rev., 2014; 38(4): 633-659. Crossref ● PubMed ● Google Scholar | ||||
| ||||
39. Xia X., Zhang S., Li S., Zhang L., Wang G., Zhang L., Wang J., Li Z. The cycle of nitrogen in river systems: sources, transformation, and flux. Environ. Sci.: Processes Impacts, 2018; 20: 863−891. Crossref ● PubMed ● Google Scholar | ||||
| ||||
40. Yan J., Ye W., Jian Z., Xie J., Zhong K., Wang S., Hu H., Chen Z., Wen H., Zhang H. Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles. Bioresource Technology, 2018; 266: 447−453. Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 O. M. Moroz, S. O. Hnatush, G. V. Yavorska
This work is licensed under a Creative Commons Attribution 4.0 International License.