QUANTITATIVE EVALUATION OF WAVELET COMPRESSION OF IMAGES

Ihor Polovynko, N. Lipkovskyi, Yuriy Furgala

Abstract


Recently, there has been considerable interest in the use of wavelets in image processing. This is caused by the rapid development of computing technology, graphic monitors, color printers, and digital communication technology. The number of scientific publications devoted to the problems of applying optical markers with the use of wavelets is increasing, as such applied fields as steganoraphia and steganoanalysis are formed and developed on their basis.

On the other hand, images are represented in digital form with a sufficiently large number of bits, which requires the search for effective methods of their compression. Despite a significant number of theoretical and experimental works in the field of image compression and restoration, there are still a number of issues that require their study and implementation. This, in particular, concerns the quantitative assessment of the effectiveness of certain methods that would give the optimal result with minimal computing power, as well as the creation of reliable computer programs for the implementation of these processes. At present, the assessment of changes occurring during image compression and restoration is largely a subjective procedure, which complicates their further processing by computer methods. Therefore, in this work, using the example of histogram processing of Dobesha wavelets, a method of quantitative assessment of the change in image quality is proposed.

Programming was carried out in the high-level java language, as it has a number of features that allow working with wavelets from "scratch". An application that performs image compression using wavelets of the Dobeshe family has been implemented. The distortion evaluation parameter is proposed, which is the ratio of the difference between the mean square deviations of the histograms of the compressed and original images to the mean square deviation of the histogram of the compressed image. The estimation of the value of this parameter was carried out for the low-pass Dobeshe (LL) filter with a different number of expansion coefficients. It is shown that as the number of these coefficients increases, the distortion parameter decreases, which correlates with visual observations.

Keywords: image compression, Dobeshe wavelets, basic wavelet coder, subband coder, histograms, distortion parameter.


References


  1. Наконечний А., Наконечний Р., Павліш В. (2010). Цифрова обробка зображень. Видавництво Львівської політехніки. С.366
  2. Коханович Г.Ф., Пузиренко Ф.Ю. Комп’ютерна стеганографія. Теорія і практика-Київ:Київ- Прес,2006.-288с
  3. Коршунов Ю.М. Математические основы кибернетики. — М.: Энергия, 1980. — 424 с.
  4. І. Половинко, Н. Ліпковський. «Стійкість оптичних маркерів на зображеннях за умови зовнішніх завад». // Електроніка та інформаційні технології. – 2022. – Вип. 19– С. 38-47
  5. І. Половинко, О. Семочко. Кількісна оцінка вінерівської фільтрації зображень// Електроніка та інформаційні технології. – 2023. – Вип.22 – С. 24-33.
  6. Вайд’янатхан П.П. Цифрові фліьтри, блоки фільтрів і поліфазні ланцюги з багаточастотною дискретизацією: Методичний огляд, 1990, №3. С.77-120.
  7. William A. Pearlman, Amir Said, 2011 Chapter 4 «Entropy coding techniques» pp41-76 11.
  8. Villasenor J., Belzer B., Liao J. Wavelet filter evaluation for image compression //IEEE Trans. on image processing, 1995, No8. P.1053-1060.
  9. Vetterli M., Kovacevic J. Wavelets and subband coding. Prentice Hall, 1995, 307p 18.
  10. V.I. Vorobjov, V.G. Gribunin. Theory and practice of wavelet transformation. S-Petersburg -204P,1999
  11. S. P. Lloyd. Least squares quantization in PCM, IEEE Transactions on Information Theory, 1982, vol. 28, n°2, pp. 129–137
  12. Robert M. Gray, Davfid L. Neuhoff. Quantization. IEEE Trans. on Inf. Theory, 1998
  13. Mallat S.G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation/ S.G. Mallat //IEEE Transactions on Pattern Analysis and Machine Intelligence. 1989.- Vol II, 7.-P. 674-693.
  14. Lewis A., Knowles G. Image compression using the 2-d wavelet transform //IEEE Transactions on Image Processing, 1992, No2. P.244-250.
  15. Karhunen–Loeve transform (KLT) [Архівовано 2016-11-28 у Wayback Machine.], Computer Image Processing and Analysis (E161) lectures, Harvey Mudd College
  16. Karhunen–Loeve transform (KLT) [Архівовано 2016-11-28 у Wayback Machine.], Computer Image Processing and Analysis (E161) lectures, Harvey Mudd College
  17. Ihor Polovynko. Marcing of the Color Imagies by Using Wavelet Transformations, Electronics and Information Technology – 2021 – Issue15. – PP.59-66 .
  18. Ian H. Witten, Alistair Moffat, Timothy C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images. — 1999. — 551 с.
  19. Gonzales R., Woods R. Digital image processing (2th) – Prentice Hall. – 2017. – 802.
  20. Ihor Polovynko. Digital signature creation by using descrete cosine and wavelet transformations, Electronics and Information Technology., 2018- Issue10. – PP.86-98




DOI: http://dx.doi.org/10.30970/eli.25.2

Refbacks

  • There are currently no refbacks.