SIMULATING FIELD-INDUCED PERCOLATION IN A THREE-DIMENSIONAL ARRAY OF STRAIGHT NANOTUBES
Abstract
An examination of the percolation phenomenon in a system of straight nanotubes has been conducted, and a tailored model for the process has been proposed. A computational algorithm has been devised to determine the likelihood of nanotube percolation, employing three-dimensional graphics visualization tools. The investigation delves into the impact of geometric dimensions and nanotube concentration on percolation probability. Through an exploration of the relationship between percolation probability and dispersion angle values dictating nanotube orientation, fundamental patterns in the formation of conductive clusters under the influence of an electric field are identified. The optimum parameters for a nanotube system exhibiting field-controlled percolation have been ascertained through this analysis.
Key words: nanotubes, percolation, percolation probability, 3D visualization
Full Text:
PDFReferences
- Li M. Percolation on complex networks: Theory and application / M. Li, R. R. Liu, L. Lü, M. B. Hu, S. Xu, Y. C. Zhang // Physics Reports. – 2023. – Vol. 907. – P. 1-68.
- Sarikhani N. Unified modeling and experimental realization of electrical and thermal percolation in polymer composites / N. Sarikhani, Z. S. Arabshahi, A. Saberi, A. Z. Moshfegh // Applied Physics Reviews. – 2022. – Vol. 9(4). – 041403.
- Ji S. Experimental and theoretical investigations of the rheological and electrical behavior of nanocomposites with universal percolation networks / S. H. Ji, D. Lee, J. S. Yun // Composites Part B: Engineering. – 2021. – Vol. 225. – P. 109317.
- Payandehpeyman J. Physics-based modeling and experimental study of conductivity and percolation threshold in carbon black polymer nanocomposites / J. Payandehpeyman, M. Mazaheri, A. S. Zeraati, S. Jamasb, U. Sundararaj // Applied Composite Materials. – 2023. – P. 1-21.
- Karbovnyk I. Random nanostructured metallic films for environmental monitoring and optical sensing: experimental and computational studies / I. Karbovnyk, J. Collins, I. Bolesta, A. Stelmashchuk, Kolkevych A., S. Velupillai, H. Klym, O. Fedyshyn, S. Tymoshuk and I. Kolych // Nanoscale Research Letters. – 2015. - Vol. 10(1). – P. 151.
- Tang Z. H. Modeling the synergistic electrical percolation effect of carbon nanotube/graphene/polymer composites / Z. H. Tang, D. Y. Wang, Y. Q. Li, P. Huang, S. Y. Fu // Composites Science and Technology. – 2022. – Vol. 225. – P. 109496.
- Haghgoo M. Predicting effective electrical resistivity and conductivity of carbon nanotube/carbon black-filled polymer matrix hybrid nanocomposites / M. Haghgoo, R. Ansari, M. K. Hassanzadeh-Aghdam // Journal of Physics and Chemistry of Solids. – 2022. – Vol. 161. – P. 110444.
- Wang D. Y. Modelling the effects of carbon nanotube length non-uniformity and waviness on the electrical behavior of polymer composites / D. Y. Wang, Z. H. Tang, P. Huang, Y. Q., S. Y. Fu // Carbon. – 2023. – Vol. 201. – P. 910-919.
- Min C. The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: A review / C. Min, X. Shen, Z. Shi, L. Chen, Z. Xu // Polymer-Plastics Technology and Engineering. – 2010. – Vol. 49(12). – P. 1172-1181.
- Karbovnyk I. Effect of radiation on the electrical properties of PEDOT-based nanocomposites / I. Karbovnyk, O. Olenych, O. Aksimentyeva, H. Klym, O. Dzendzelyuk, Yu. Olenych, O. Hrushetska // Nanoscale Research Letters. – 2016. – Vol. 11. – P. 84.
- Yakuphanoglu F. Double-walled carbon nanotube/polymer nanocomposites: electrical properties under dc and ac fields / F. Yakuphanoglu, I. S. Yahia, G. Barim, B. F. Senkal // Synthetic metals, 2010. – Vol. 160(15-16). – P. 1718-1726.
- Snarskii A. A. Induced anisotropy in composite materials with reconfigurable microstructure: Effective medium model with movable percolation threshold / A. A. Snarskii, M. Shamonin, P. Yuskevich, D. V. Saveliev, I. A. Belyaeva // Physica A: Statistical Mechanics and its Applications. – 2020. – Vol. 560. – P. 125170.
- Yang Z. The effect of anisotropy on the percolation threshold of sealing surfaces / Z. Yang, J. Liu, X. Ding, F. Zhang // Journal of Tribology. – 2019. – Vol. 41(2). – P. 022203.
- Du F. Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites / F. Du, J. E. Fischer, K. I. Winey // Physical Review B. – 2005. – Vol. 72. – P. 121404.
- Massey M.K. Evolution of electronic circuits using carbon nanotube composites / M.K. Massey, A. Kotsialos, D. Volpati, E. Vissol-Gaudin, C. Pearson, L. Bowen, B. Obara, D.A. Zeze, C. Groves, M.C. Petty // Scientific Reports. – 2016. – Vol. 6. – P. 32197.
- Stelmashchuk A. Modeling and quantitative analysis of connectivity and conductivity in random networks of nanotubes / A. Stelmashchuk, I. Karbovnyk, H. Klym, O. Berezko, Yu. Kostiv, R. Lys // EasternEuropean Journal of Enterprise Technologies. – 2017. – Vol. 5(12). – P. 4-12.
- Zeng X. Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites / X. Zeng, X. Xu, P.M. Shenai, E. Kovalev, C. Baudot, N. Mathews, Y. Zhao // J. Phys. Chem. C. – 2011. – Vol. 115. – P. 21685-21690.
DOI: http://dx.doi.org/10.30970/eli.24.1
Refbacks
- There are currently no refbacks.