1-D INTERFEROMETER IN 3-D SPACE AND RADON TRANSFORM

A. Lozynskyy, Bohdan Rusyn, O. Ivantyshyn

Abstract


Observations in three-dimensional space using an interferometer generally require a corresponding rank of the base vector system of the interferometric system. The paper considers one of the ways to solve such a problem using a 1D interferometer with a moving antenna. Due to its movement, it is possible to synthesize an interferometer of a higher rank, similar to aperture synthesis. Moving the moving antenna in the plane allows formation of a 2D interferometer. The obtained analytical expressions show that such an interferometer performs the Radon transform of the angular structure of the spatial image when observing sources far beyond the size of the interferometer base. In the quasi-monochromatic approximation, a comparison is made between the van Cittert-Zernike theorem, which is widely used in such problems, and the considered transformation. It is shown that the obtained conclusions agree well with each other, while the Radon transform better meets the problem and is free from a number of limitations.

Key words: 1D and 2D interferometers, aperture synthesis, Radon transform, mutual coherence function, angular intensity distribution.


Full Text:

PDF

References


  1. Huang L., Janpeng X., Idir M. One-dimensional angular-measurement-based stitching interferometry // Optics Express. - 2018. - Vol. 26, No. 8. P. 9882-9892. https://doi.org/10.1364/OE.26.009882
  2. Rahmani M, Todovska M. 1-D system identification of buildings during earthquakes by seismic interferometry with waveform inversion of impulse responses-method and application to Millikan library // Soil Dynamics and Earthquake Engineering. - 2013 - Vol. 47. P. 157-174. https://doi.org/10.1016/j.soildyn.2012.09.014
  3. Czarny R, Pilecki Z., Drzewińska D. The application of seismic interferometry for estimating a 1-D S-wave velosity model with the use of mining induced seismicity // Journal of Sustainable Mining. - 2018. - Vol. 17, No. 4. P. 209-214. https://doi.org/10.1016/j.jsm.2018.09.001
  4. Blum T., Ponet B.,Breugnot S.,Clemenceau P. Non-destructive testing using multi-channel random-quadrature interferometer. AIP conference proceeding, 975.299, - 2008. - https://doi.org/10.1063/1.2902664
  5. Birge J., Ell,R., Kartner F. Two-dimensional spectral shearing interferometry for few-cycle pulse characterization // Optics Letters. - 2006. - Vol. 31, No. 13. P. 2063-2065. https://doi.org/10.1364/OL.31.002063
  6. Wagner F., Schiffers F., Willomitzer F., Cossairt O., Velten A. Intensity interferometry-based 3D imaging // Optics Express. - 2021. - Vol. 29, No. 4. P. 4733-4745. https://doi.org/10.1364/OE.412688
  7. Graciani G., Filoche M., Amblard F. 3D stochastic interferometer defects picometer deformations and minute dielectric fluctuations of its optical volume // Communications Physics. - 2022. - Vol. 5, No. 239. https://doi.org/10.1038/s42005-022-01016-9
  8. Thompson A. R. Interferometry and Synthesis in Radio Astronomy / A. Richard Thompson, James M. Moran, George W. Swenson, Jr.; 3rd ed. Springer, 2017. http://doi.org/10.1007/978-3-319-44431-4
  9. Scaife A. M. M. Big telescope, big data: towards exascale with the Square Kilometre Array // Phil. Trans. R. Soc. – 2019 – id. A.3782019006020190060. https://doi.org/10.1098/rsta.2019.0060
  10. H. Garsden, J. N. Girard, J. L. Starck et al. (78 more). LOFAR sparse image reconstruction // A&A. - 2015 – Vol. 575, id. A90, 18 pp. https://doi.org/10.1051/0004-6361/201424504
  11. Schwab F. R. Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry // The Astronomical Journal. - 1984. - Vol. 89. P. 1076–1081. http://doi.org/10.1086/113605
  12. Taylor G., Carilli C., Perley, R. Synthesis imaging in radio astronomy II // ASP Conference Series. - 1999. - Vol. 180.
  13. Shopbell P., Britton M., Ebert R. Astronomical Data Analysis Software and Systems XIV // Astronomical Society of the Pacific Conference Series. - 2005. - Vol. 347.
  14. Bhatnagar S., Rau U. and Golap, K. Wide-field wide-band interferometric imaging: the WB a-projection and hybrid algorithms // The Astrophysical Journal. - 2013. - Vol. 770, No. 2, p. 91. https://doi.org/10.1088/0004-637X/770/2/91
  15. Kornienko Yu. V., Skuratovskiy S. I. On the image reconstruction under its Fourier-transform modulus // Radiofiz. elektron. - 2008. - Vol. 13, No. 1, P. 130-141.
  16. Kornienko Y., Lyashenko I., Pugach V., Skuratovskiy S. Accumulation of Fourier Component Phases during Observation of an Object with an Orbital Telescope // Kinematics and Physics of Celestial Bodies. - 2020. - Vol. 36, No. 1, P. 37-45.
  17. Koshovy V. V., Lozynsky A. B. The radio image restoring of space radio sources based on the longitudinal cross-correlation function // Information extraction and processing. - 1998. - Vol. 12 (88), PP. 37-41.
  18. Koshovyy V.; Lozynskyy A.; Lozynskyy B. The tomographic technique for reconstruction of the cosmic radio sources images on the basis of radio interferometric data // XXVIIth General Assembly of the International Union of Radio Science. - 2002. https://doi.org/10.5281/zenodo.7950758
  19. Lozynskyy A., Ivantyshyn O., Rusyn B. Using multi-position interferometry to determine the position of objects // Information and Communication Technologies, Electronic Engineering. - 2022. - Vol. 2, No. 1, P.52-60. https://doi.org/10.23939/ictee2022.01.052.
  20. Natterer, F. The Mathematics of Computerized Tomography. John Wiley & Sons. New York - 1986. - 240p.
  21. Lozynsky A., Romanyshyn I., Rusyn B. Tomographic Image Reconstruction Based on Generalized Projections // Cybernetics and System Analysis. - 2021. - Vol. 57, No. 3, P. 463-469. https://doi.org/10.1007/s10559-021-00371-9




DOI: http://dx.doi.org/10.30970/eli.22.1

Refbacks

  • There are currently no refbacks.