THE COMBINED ELLIPSOMETRIC METHOD OF COMPLETE OPTICAL CHARACTERIZATION OF CRYSTALS.
IV. APPLICATION TO UNIAXIAL CRYSTAL.

Viktor Belyukh, Bohdan Pavlyk

Abstract


In the fourth part of the article, the application of the proposed method for the complete optical characterization of crystals to optically uniaxial crystals is considered. The object of the study was lithium niobate (LiNbO3) crystals. Refining the orientation of the optical indicatrix in the samples under study, we confirmed the conclusion by direct measurements that for the implementation of the proposed combined ellipsometric method, knowledge of the crystallographic orientation of the crystal under study is completely optional. The obtained values of the optical constants of the undoped LiNbO3 crystal [no = 2.280(±0.003), ne = 2.202(±0.002), Δn = – 0.0775(±0.0015)] fully confirmed the correctness of the proposed method and its efficiency in the investigation of uniaxial crystals. The sensitivity of the combined ellipsometric method was tested on LiNbO3 crystals subjected to high-temperature annealing in an H2O atmosphere. The optical constants obtained for an undoped LiNbO3 crystal [no = 2.2455(±0.0015), ne = 2.1965(±0.0015), Δn = – 0.049(±0.001)] and a magnesium-doped LiNbO3 crystal [no = 2.2445(±0.0015), ne = 2.1756(±0.0007), Δn = – 0.069(±0.001)] is significantly less than the optical constants of the as grown crystal. It is assumed that the main reason that caused such significant changes is high-temperature annealing in an H2O atmosphere. Our main goal was to show the applicability of the method to the analysis of possible changes in the optical constants of a crystal caused by the influence of various factors on its properties. The results obtained show that the goal has been achieved.

Key words: ellipsometry, optical indicatrix, principal refractive indexes, uniaxial crystals, lithium niobate.


Full Text:

PDF

References


  1. Belyukh V., Pavlyk B. The combined ellipsometric method of complete optical characterization of crystals. I. Determination of the orientation of the optical indicatrix. // Electronics and information technologies. – 2021. – Issue 15. – P. 112-123. https://doi.org/10.30970/eli.15.11
  2. Belyukh V., Pavlyk B. The combined ellipsometric method of complete optical characterization of crystals. II. Determination of the optical constants of crystal. // Electronics and information technologies. – 2021. – Issue 16. – P. 104-117. https://doi.org/10.30970/eli.16.11
  3. Belyukh V., Pavlyk B. The combined ellipsometric method of complete optical characterization of crystals. III. Experimental determination of the orientation of optical axis in crystal. // Electronics and information technologies. – 2022. – Issue 18. – P. 87-95. https://doi.org/10.30970/eli.18.9
  4. Boyd G. D., Miller R. C., Nassau K., Bond W. L. and Savage A. LiNbO3: An efficient phase machable nonlinear optical material// Applied Physics Letters. – 1964. – Vol.5, №11. – P.234-236. https://doi.org/10.1063/1.1723604
  5. Kuzminov Yu.S. Lithium niobate and lithium tantalate are materials of nonlinear optics. – Moscow: Nauka (Publishing House), 1975. – 224 p. [In Russian]
  6. Gurzadyan G.G., Dmitriev V.G., Nikogosyan D.N. Nonlinear-optical crystals. Properties and applications in quantum electronics. – Moscow: Radio and Svyaz (Publishing House), 1991. – 160 p. [In Russian]
  7. Arizmendi L. Photonic applications of lithium niobate crystals // Physica Status Solidi (a). – 2004. – Vol.201, №2. – P.253-283. https://doi.org/10.1002/pssa.200303911
  8. Günter P. Huignard J.-P. (Eds.). Photorefractive Materials and Their Applications. 1. Basic effects (Springer Series in Optical Sciences, 113). – NY.: Springer Science + Business Media, LLC. – 2006. – 426 p.
  9. Günter P., Huignard J.-P. (Eds.). Photorefractive Materials and Their Applications 2. Materials (Springer Series in Optical Sciences, 114). – NY.: Springer Science + Business Media, LLC. – 2007. – 646 p.
  10. Günter P., Huignard J.-P. (Eds.). Photorefractive Materials and Their Applications 3. Applications (Springer Series in Optical Sciences, 115). – NY.: Springer Science + Business Media, LLC. – 2007. – 366 p.
  11. Zhu D., Shao L., Yu M., Cheng R. et al. Integrated photonics on thin-film lithium niobate // Advances in Optics and Photonics. – 2021. – Vol.13, №2. – P.1-94. https://doi.org/10.1364/AOP.411024
  12. Ashkin A., Boyd G. D., J. M. Dziedzic, R. G. Smith, A. A. Ballman, J.J. Levinstein, K. Nassau. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3 // Applied Physics Letters. – 1966. – Vol.9, №1. – P.72-74. https://doi.org/10.1063/1.1754607
  13. Weis R. S., Gaylord T. K. Lithium niobate: Summary of physical properties and crystal structure // Applied Physics A, Solids and Surfaces. – 1985. – Vol.37, №4. – P.191-203. https://doi.org/10.1007/BF00614817
  14. Prokhorov A.M., Kuzminov Yu.S. Physics and Chemistry of Crystalline Lithium Niobate. – The Adam Hilger Series on Optics and Optoelectronics, CRC Press: Boca Raton, FL, USA, Bristol and New York. – 1990. – 337 p. [Google Scholar]
  15. Volk T. Wöhlecke M. Lithium niobate. Defects, photorefraction and ferroelectric switching – Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany. – Volume 115 – 2009. – 250 р. [Google Scholar]
  16. Toney J.E. Lithium Niobate Photonics. – Artech House Publishers: London, UK. – 2015. – 265 p. [Google Scholar]
  17. Grachev V.G., Malovichko G. I. Structures of Impurity Defects in Lithium Niobate and Tantalate Derived from Electron Paramagnetic and Electron Nuclear Double Resonance Data //Crystals – 2021. – Vol.11, №4. – P.339-379. https://doi.org/10.3390/cryst11040339
  18. Blistanov A.A, Bondarenko V.S., Perelomova N.V., Strizhevskaya F.N., Tchkalova V.V., Shaskolskaya M.P. Acoustic Crystals: A Handbook (ed. M.P. Shaskolskaya). – Moscow: Nauka (Publishing House), 1982. – 632 p. [In Russian]
  19. Kuzminov Yu.S. Electro-optical and nonlinear-optical crystal of lithium niobate. – Moscow: Nauka (Publishing House), 1987. – 264 p. [In Russian]
  20. Boyd G. D., Bond W. L., Carter, H. L. Refractive Index as a Function of Temperature in LiNbO3 // Journal of Applied Physics. – 1967. – Vol.38, №4. – P.1941-1943. https://doi.org/10.1063/1.1709786
  21. Midwinter J. E. Lithium Niobate: Effects of Composition on the Refractive Indices and Optical Second Harmonic Generation // Journal of Applied Physics. – 1968. – Vol.39, №7. – P.3033-3038. https://doi.org/10.1063/1.1656727
  22. Nelson D. F., Mikulyak R. M. Refractive indices of congruently melting lithium niobate // Journal of Applied Physics. – 1974. – Vol.45, №8. – P.3688-3689. https://doi.org/10.1063/1.1663839
  23. Minakata M., Saito S., Shibata M., Miyazawa S. Precise determination of refractive‐index changes in Ti‐diffused LiNbO3 optical waveguides // Journal of Applied Physics. – 1978. – Vol.49, №9. – P.4677-4682. https://doi.org/10.1063/1.325537
  24. Jundt D. H., Fejer M. M., Byer R. L. Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration // IEEE Journal of Quantum Electronics. – 1990. – Vol.26, №1. – P.135-138. https://doi.org/10.1109/3.44926
  25. Shen H. Y., Xu H., Zeng Z. D., Lin W. X., Wu R. F., Xu, G. F. Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol % MgO // Applied Optics. – 1992. – Vol.31, №31. – P.6695-6697. https://doi.org/10.1364/AO.31.006695
  26. Shlarb U.,Betzler K. Refractive indices of lithium niobate as a function of temperature, wavelength and composition: a generalized fit // Phys. Rev. B. – 1993. – Vol.48, №21. – P.15613-15620. https://doi.org/10.1103/PhysRevB.48.15613
  27. Shlarb U.,Betzler K. Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate // Phys. Rev. B. – 1994. – Vol.50, №2. – P.751-757. https://doi.org/10.1103/PhysRevB.50.751
  28. Shlarb U.,Betzler K. Refractive indices of lithium niobate as a function of wavelength and composition // Journal of Applied Physics. – 1993. – Vol.73, №7. – P.3472-3476. https://doi.org/10.1063/1.352951
  29. Riscob B., Bhaumik I., Ganesamoorthy S., Bhatt R., Vijayan N., Karnal A. K., Wahabb M. A. and Bhagavannarayana G. Effect of Mg doping on the growth aspects, crystalline perfection, and optical and thermal properties of congruent LiNbO3 single crystals // Journal of Applied Crystallography. – 2013. – Vol.46, №6. – P.1854-1862. https://doi.org/10.1107/S0021889813025065
  30. Furukawa Y., Sato M., Kitamura K., Yajima Y., Minakata M. Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios // Journal of Applied Physics. – 1992. – Vol.72, №8. – P.3250-3254. https://doi.org/10.1063/1.351444
  31. Lee J.-S., Rhee B. K., Kim C.-D., Joo G.-T. (1997). Efficient second harmonic generation of Q-switched Nd:YAG laser radiation using LiNbO3 with 2 mol% MgO doping // Materials Letters. – 1997. – Vol.33, №1-2. – P.63-65. https://doi.org/10.1016/S0167-577X(97)00076-1
  32. Sweeney K. L., Halliburton L. E., Bryan D. A., Rice R. R., Gerson R., Tomaschke H. E. Threshold effect in Mg‐doped lithium niobate // Applied Physics Letters. – 1984. – Vol.45, №7. – P.805-807. https://doi.org/10.1063/1.95372
  33. Sweeney K. L., Halliburton L. E., Bryan D. A., Rice R. R., Gerson R., Tomaschke H. E. Point defects in Mg‐doped lithium niobate // Journal of Applied Physics. – 1985. – Vol.57, №4. – P.1036-1044. https://doi.org/10.1063/1.334544
  34. Jhans H., Honig J. M., Rao C. N. R. Optical properties of reduced LiNbO3 // Journal of Physics C: Solid State Physics. – 1986. – Vol.19, №19. – P.3649-3658. https://doi.org/10.1088/0022-3719/19/19/019
  35. Sugak D. Y., Syvorotka I. I., Buryy O. A., Yakhnevych U. V., Solskii I. M., Martynyuk N. V. et al. Spatial distribution of optical coloration in single crystalline LiNbO3 after high-temperature H2 /air treatments // Optical Materials. – 2017. – Vol.70. – P.106-115. https://doi.org/10.1016/j.optmat.2017.05.022
  36. Adibi A., Buse K., Psaltis D. Effect of annealing in two-center holographic recording // Applied Physics Letters. – 1999. – Vol.74, №25. – P.3767-3769. https://doi.org/10.1063/1.124173
  37. Arizmendi L., Cabrera J. M., Agullo-Lopez F. Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction // Journal of Physics C: Solid State Physics. – 1984. – Vol.17, №3. – P.515-529. https://doi.org/10.1088/0022-3719/17/3/021
  38. Bordui P. F., Jundt D. H., Standifer E. M., Norwood R. G., Sawin R. L., Galipeau J. D. Chemically reduced lithium niobate single crystals: Processing, properties and improved surface acoustic wave device fabrication and performance // Journal of Applied Physics. – 1999. – Vol.85, №7. – P.3766-3769. https://doi.org/10.1063/1.369775
  39. Sugak D., Zhydachevskii Y., Sugak Y., Buryy O., Ubizskii S., Solskii I., Schrader M., Becker K.-D. In situ investigation of optical absorption changes in LiNbO3 during reducing/oxidizing high-temperature treatments // Journal of Physics: Condensed Matter. – 2007. – Vol.19, №8. – P.086211 (12pp). https://doi.org/10.1088/0953-8984/19/8/086211
  40. Dhar A., Mansingh A. Optical properties of reduced lithium niobate single crystals // Journal of Applied Physics. – 1990. – Vol.68, №11. – P.5804-5809. https://doi.org/10.1063/1.346951
  41. García-Cabaes A., Sanz-García J. A., Cabrera J. M., Agulló-López F., Zaldo C., Pareja R., Polgar K., Raksanyi K., Fölvàri I. Influence of stoichiometry on defect-related phenomena inLiNbO3 // Physical Review B. – 1988. – Vol.37, №11. – P.6985-6091. https://doi.org/10.1103/physrevb.37.6085
  42. Solskii I. M., Sugak D. Yu., Gaba V. M. The obtaining of optical homogenous and large size lithium niobate single crystals // Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. – 2005. – Vol.5 (59). – P.55-61. [in Russian]
  43. Sugak D. Y., Matkovskii A. O., Solskii I. M., Stefanskii I. V., Gaba V. M., Mikhalevych A. I., Grabovskii V.V., Prokhorenko V.I., Kopko B .N., Oliinyk V. Y. Growth and Investigation of LiNbO3:MgO Single Crystals // Proc. SPIE (Nonlinear Optics of Liquid and Photorefractive Crystals.). – 1996. – Vol.2795. – P.257-264. https://doi.org/10.1117/12.239216
  44. Sugak D. Y., Matkovskii A. O., Solskii I. M., Kopko B. N., Oliinyk V. Y., Stefanskii I. V., Gaba V. M., Grabovskii V.V., Zaritskii I.M., Rakitina L. G. Growth and Optical Properties of LiNbO3: MgO Single Crystals // Crystal Research and Technology. – 1997. – Vol.32, №6. – P.805-811. https://doi.org/10.1002/crat.2170320612
  45. Sirotin Yu.I., Shaskolskaya M.P. Fundamentals of crystal physics. – Moscow: Nauka (Publishing House), 1979. – 640 p. [In Russian]
  46. Zelmon D. E., Small D. L., Jundt, D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide–doped lithium niobate // Journal of the Optical Society of America B. – 1997. – Vol.14, №12. – P.3319-3322. https://doi.org/10.1364/JOSAB.14.003319




DOI: http://dx.doi.org/10.30970/eli.20.9

Refbacks

  • There are currently no refbacks.