INVESTIGATION OF TRAPS IN β-Ga2O3:0.05%Cr AND β-Ga1,9In0,1O3:0,05%Cr CRYSTALS BY FRACTIONAL THERMAL-GLOW TECHNIQUE

Andriy Luchechko, V. Vasyltsiv, L. Kostyk, M. Kushlyk, D. Slobodzyan

Abstract


The research results of the luminescence spectra and thermally stimulated luminescence (TSL) in β-Ga2O3 and β-Ga1,9In0,1O3 single crystals doped with chromium ions, grown by the optical melting zone method, have been presented. The Cr3+ impurity concentration was 0.05%. Luminescence was excited by light with a wavelength of 440 nm from the region of the broad absorption band 4A24T1 of Cr3+ ions. Two sharp R-lines (2E4A2 transitions) are dominated in the luminescence spectrum of investigated samples at the temperature of liquid nitrogen. A number of weak narrow lines associated with the phonon-induced sidebands of the R-lines are observed in the wavelength range of 700-740 nm. At room temperature, a broad luminescence band extending from 650 to 900 nm is dominated and corresponds to electron-vibrational 4T24A2 transitions in chromium ions. The R-lines are also observed on the background of this broad luminescence band in the luminescence spectrum of chromium impurity in gallium oxide at room temperature. The luminescence of chromium impurity in solid solutions is concentrated only in a broad luminescence band with a maximum near 775 nm (4T24A2 transitions). Doping of β-Ga2O3 with a chromium impurity leads to the appearance of a thermoluminescence maximum at 285 K, which corresponds to traps with an energy depth of 0.59 eV. In the crystals of the solid solution, there is a shift of the TSL maximum to the range of low temperatures up to 225 K and an increase in its half-width. The fractional thermal-glow technique was used to analyze the TSL complex maximum at 225 K. It was established that this maximum consists of at least 4 elementary maxima, which are caused by the release of electrons from traps with activation energies in the ranges of 0.4-0.42 and 0.48-0.495 eV. The method of the initial increase in the intensity of the TSL glow was used to calculate the activation energy.

Keywords: β-Ga2O3, solid solutions, thermally stimulated luminescence, activation energy.


References


  1. Higashiwaki M. Development of gallium oxide power devices / M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi // Phys. Status Solidi (A). ‒2014. ‒ Vol. 211. P. 21–26.
  2. Pearton S.J. A review of Ga2O3 materials, processing, and devices. / S.J. Pearton, J. Yang, P.H. Cary IV, F. Ren, J. Kim, M.J. Tadjer, & M.A. Mastro // Applied Physics Reviews. ‒2018. ‒ Vol. 5. P. 011301.
  3. Higashiwaki M. Recent progress in Ga2O3 power devices / M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi // Semiconductor Science and Technology. ‒2016. ‒ Vol. 31. P. 034001.
  4. Pearton, S.J. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS // S.J. Pearton, F. Ren, M.J. Tadjer, J. Kim // Journal of Applied Physics. ‒2018. ‒ Vol. 124. P. 220901.
  5. Luchechko A. Dual channel solar-blind UV photodetector based on β-Ga2O3 / A. Luchechko, V. Vasyltsiv, L. Kostyk, B. Pavlyk // Phys. Status Solidi (A). ‒2019. ‒ Vol. 216. P. 1900444.
  6. [6] Guo D. Review of Ga2O3 based optoelectronic devices / D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, W. Tang // Materials Today Physics. ‒2019. ‒ Vol. 11. P. 100157.
  7. Shannon R.D. Synthesis and Structure of Phases in the In2O3-Ga2O3 System / R.D. Shannon, C.T. Preqitt // Journal of Inorganic and Nuclear Chemistry. ‒1968. ‒ Vol. 30. P. 1389.
  8. [8] Vasyltsiv V.I. Optical absorption and photoconductivity at the band edge of β-Ga2−xInxO3 / V.I. Vasyltsiv, Ya. I. Rym, Ya. M. Zakharko // Physica status solidi (b). ‒1996. ‒ Vol. 195. P. 653-658.
  9. Varley J.B. First-principles calculations of structural, electrical, and optical properties of ultra-wide bandgap (AlxGa1−x)2O3 alloys / J.B. Varley // J. Mater. Res. ‒2021. ‒ Vol. 36. P. 4790.
  10. Irmscher K. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method / K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari // J. Appl. Phys. ‒2011. ‒ Vol. 110. P. 063720.
  11. Luchechko A. Origin of Point Defects in β-Ga2O3 Single Crystals Doped with Mg2+ Ions / A. Luchechko, V. Vasyltsiv, L. Kostyk, and O. Tsvetkova // Acta Physica Polonica A. ‒2018. ‒ Vol. 133. P. 811-815.
  12. Zhang Z. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy / Z. Zhang, E. Farzana, A.R. Arehart, S.A. Ringel // Appl. Phys. Lett. ‒2016. ‒ Vol. 108. P. 052105.
  13. Luchechko A. Thermally stimulated luminescence and conductivity of β-Ga2O3 crystals / A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, B. Pavlyk // Journal of Nano and Electronic Physics. ‒2019. ‒ Vol. 11. P. 03035.
  14. Vasyltsiv V. Correlation between electrical conductivity and luminescence properties in β-Ga2O3:Cr3+ and β-Ga2O3:Cr,Mg single crystals / V. Vasyltsiv, A. Luchechko, Y. Zhydachevskyy, L. Kostyk, R. Lys, D. Slobodzyan, R. Jakieła, B. Pavlyk, and A. Suchocki // J. Vac. Sci. Technol. ‒2021. ‒ Vol. A39. P. 033201.
  15. Luchechko A. The Effect of Cr3+ and Mg2+ impurities on thermoluminescence and deep traps in β-Ga2O3 crystals / A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, B. Pavlyk // ECS Journal of Solid State Science and Technology. ‒2020. ‒ Vol. 9. P. 5008.
  16. Gobrecht H. Spectroscopy of traps by fractional glow technique / H. Gobrecht, D. Hofmann // J. Phys.Chem.Solids. ‒1966. ‒ Vol. 27. P. 509-522.
  17. McKeever S.W.S. Thermoluminescence of Solids. – Cambridge University Press, 1988. – 392 p.
  18. Кінетика рекомбінаційної люмінесценції і провідності кристалофосфорів: колективна монографія / В.Я. Дегода, А.Ф. Гуменюк, Ю.А. Маразуєв. – К.: ВПЦ "Київський університет", 2016. – 151 с.




DOI: http://dx.doi.org/10.30970/eli.19.8

Refbacks

  • There are currently no refbacks.