DEVELOPMENT OF A FINGERPRINT PATTERN MATCHING METHOD USING K-MEANS

Mariya Nazarkevych, A. Petrov, O. Onopriychuk, N. Oleksiv, Y. Kis

Abstract


Biometric identification methods wstudied. Biometric identification of fingerprints and methods of their use are analyzed. As a recognition, fingerprint-based intelligent analysis identification is preferred, in particular the matching of a scanned fingerprint to a template. The paper analyzed the main filtering algorithms of the K-Means clustering method. The the study result of the program operation with the presented method of filtering the fingerprints were obtained. The developed identification system is based on Arduino Nano in combination with a DY50 fingerprint scanner. The software of this system is implemented using the C++ language and integrated using the Arduino IDE.

Keywords: filtering, Ateb-Gabor filtering, biometric images.


Full Text:

PDF

References


  1. Jeon, S. J., Go, M. S., & Namgung, J. H. (2022). Use of personal information for artificial intelligence learning data under the Personal Information Protection Act: the case of Lee-Luda, an artificial-intelligence chatbot in South Korea. Asia Pacific Law Review, 1-18.
  2. Luo, S. (2022). User Sensitive Information Protection Scheme Based on Blockchain Technology. Mobile Information Systems, 2022.
  3. Hrytsyk, V., Grondzal, A., & Bilenkyj, A. (2015, September). Augmented reality for people with disabilities. In 2015 Xth International Scientific and Technical Conference" Computer Sciences and Information Technologies"(CSIT) (pp. 188-191). IEEE.
  4. Gulekci, Y., Efeoglu Ozseker, P., Cavus Yonar, F., & Daglioglu, N. (2022). Comparison of methods to develop fingerprints on papers impregnated with AB‐PINACA and AB‐FUBINACA. Journal of Forensic Sciences, 67(2), 524-533.
  5. Kasprowski, P., & Ober, J. (2004, May). Eye movements in biometrics. In International Workshop on Biometric Authentication (pp. 248-258). Springer, Berlin, Heidelberg.
  6. Giełczyk, A., Marciniak, A., Tarczewska, M., & Lutowski, Z. (2022). Pre-processing methods in chest X-ray image classification. Plos one, 17(4), e0265949.
  7. Wang, C., Peng, G., & De Baets, B. (2022). Class-specific discriminative metric learning for scene recognition. Pattern Recognition, 126, 108589.
  8. Voznyi, Y., Nazarkevych, M., Hrytsyk, V., Lotoshynska, N., & Havrysh, B. (2021). Проектування системи автентифікації біометричного захисту на основі методу K-середніх. Електронне фахове наукове видання "Кібербезпека: освіта, наука, техніка", 4(12), 85-95.
  9. Nazarkevych, M., & Nazarkevych, H. (2022). Проектування захищеної інформаційної системи для створення продукту в умовах адаптації. Електронне фахове наукове видання "Кібербезпека: освіта, наука, техніка", 3(15), 186-195.
  10. Nazarkevych M., Marchuk A., Voznyi Ya. Development of biometric identification methods based on new filtration methods // Electronics and information technologies. 2020. Issue 14. P. 55–64.
  11. Minz, S., Singh, S., Aggarwal, A., Behl, N., Rajput, P., & Sharma, S. (2022, January). A Gesticulation Superintend Arm with Arduino IDE. In 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 766-771). IEEE.




DOI: http://dx.doi.org/10.30970/eli.19.5

Refbacks

  • There are currently no refbacks.