FIRST-PRINCIPLE MODELING OF STRUCTURAL, ELECTRONIC, AND OPTICAL PROPERTIES OF CH3NH3PbBr3

O. Kozachenko, Oleh Bovgyra, M. Kovalenko, V. Kapustianyk, P. Yakibchuk

Abstract


Organic-inorganic hybrid perovskites have recently attracted attention due to their potential applications in solar cells, light-emitting, and photovoltaic devices. In this work, we focused on the study within the density functional theory of the structural, electronic, and optical properties of three temperature-dependent phases of perovskite CH3NH3PbBr3. We present basic parameters such as lattice parameters, electronic structures, effective charge masses, and optical absorption spectra to understand the fundamental properties of the investigated perovskite. The change in the properties of the studied crystalline phases was analyzed using various approximations for the exchange-correlation functionals. For our theoretical calculations, exchange−correlation functional was chosen in the GGA-PBE and GGA-PBEsol parametrizations, also with Hubbard correction to GGA (GGA-PBEsol+U). The U parameter was selected at 5 eV and applied to Br p-states. The calculation of the electronic properties of the CH3NH3PbBr3 perovskite shows the change in the electronic spectra was taken into account when the spin-orbit coupling (SOC) was included in the calculations. The results of band structure calculations showed that cubic, tetragonal, and orthorhombic perovskite crystal phases have semiconductor properties with direct band gaps. The use of the GGA-PBEsol and GGA-PBEsol+U methods gives the results closest to the experimental ones. We observed a radical change in the electronic spectrum when the SOC effect is included in the calculations, which leads to a reduction in the bandgap. Further explanation of the electronic bandgap nature of CH3NH3PbBr3 crystals is performed through the total (DOS) and partial density of state (PDOS) analysis. For all crystalline phases, considered perovskites showed a similar DOS distributions, which may be divided by three regions. The first region is formed by the methylammonium ion p-states, which forms narrow bands located deep about at −8eV. The second region at −6.0 – 0 eV within the valence band complex, characterizes with the largest contribution being observed from hybrid Br p-orbitals and Pb s-orbitals. The third region is placed from 2.44 to 7.0 eV for cubic, from 2.24 to 6.9 eV for tetragonal, and from 2.35 to 6.3 eV for orthorhombic phases, respectively. The conduction band minimum is mainly formed by hybridized states of the Pb p-orbitals and a small contribution of Br p-orbitals.

Calculations of the values of the effective masses in the three main directions for all crystalline phases were also carried out. The optical properties show that the CH3NH3PbBr3 perovskite has a good ability for photon absorption and demonstrates the possibility of its use in a wide temperature range.

Key words: density functional theory, band gap, perovskite, electronic structure, density of states, optical properties


References


  1. Stranks S. D. Metal-halide perovskites for photovoltaic and light-emitting devices / S. D. Stranks, H. J. Snaith // Nat. Nanotechnol. – 2015. – Vol. 10. – P. 391–402. https://doi.org/10.1038/nnano.2015.90
  2. Fan Z. Ferroelectricity of CH3NH3PbI3 Perovskite / Z. Fan, J. Xiao, K. Sun, L. Chen, Y. Hu, J. Ouyang, K. P. Ong, K. Zeng, J. Wang // J. Phys. Chem. Lett. – 2015. – Vol. 6. – P. 1155−1161. https://doi.org/10.1021/acs.jpclett.5b00389
  3. Sutter-Fella C. M. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites / C. M. Sutter-Fella, Y. Li, M. Amani, J. W. Ager, F. M. Toma, E. Yablonovitch, I. D. Sharp, A. Javey // Nano Lett. – 2016. – Vol. 16. – P. 800−806. https://doi.org/10.1021/acs.nanolett.5b04884
  4. D’Innocenzo V. Tuning the Light Emission Properties by Band Gap Engineering in Hybrid Lead Halide Perovskite / V. D’Innocenzo, A. R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza // J. Am. Chem. Soc. – 2014. – Vol. 136. – P. 17730−17733. https://doi.org/10.1021/ja511198f
  5. Kulbak M. Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells / M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen // J. Phys. Chem. Lett. – 2016. – Vol. 7. – P. 167−172. https://doi.org/10.1021/acs.jpclett.5b02597
  6. Edri E. Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells / E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen // J. Phys. Chem. Lett. – 2014. – Vol. 5. – P. 429−433. https://doi.org/10.1021/jz402706q
  7. Giannozzi P. Advanced capabilities for materials modelling with Quantum ESPRESSO / P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni // J. Phys. Condens. Matter – 2017. – Vol. 29. – P. 465901. https://doi.org/10.1088/1361-648X/aa8f79
  8. Ghaithan H. M. Density Functional Study of Cubic, Tetragonal, and Orthorhombic CsPbBr3 Perovskite / H. M. Ghaithan, Z. A. Alahmed, S. M. H. Qaid, M. Hezam, A. S. Aldwayyan // ACS Omega – 2020. – Vol. 5. – P. 7468–7480. https://doi.org/10.1021/acsomega.0c00197
  9. Коваленко М. Структура та електронні властивості перовскіту CsPbBr3: першопринципні розрахунки / М. Коваленко, О. Бовгира, В. Коломієць // Журнал фізичних досліджень. – 2021. – т. 25(4). – С. 4701-1–4701-9. https://doi.org/10.30970/jps.25.4701
  10. Kovalenko M. Structural, Electronic and Optical Properties of CsPbBr3 and CH3NH3PbBr3: First-Principles Modeling / M. Kovalenko, O. Bovgyra, V. Kolomiets, V. Kapustianyk, O. Kozachenko // Proceedings of 2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 19-21 May, 2021. – P. 232–237. https://doi.org/10.1109/ELIT53502.2021.9501119.
  11. Perdew J. P. Generalized Gradient Approximation Made Simple / J. P. Perdew, K. Burke, M. Ernzerhof // Phys. Rev. Lett. – 1996. – Vol. 77. – P. 3865−3868. https://doi.org/10.1103/PhysRevLett.77.3865
  12. Perdew J. P. Restoring the density-gradient expansion for exchange in solids and surfaces / J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke // Phys.Rev. Lett. – 2008. – Vol. 100. – P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  13. Cococcioni M. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method / M. Cococcioni, S. Gironcoli // Phys Rev B – 2005. – Vol. 71. – P.035105. https://doi.org/10.1103/PhysRevB.71.035105
  14. Welch E. Density functional theory + U modeling of polarons in organohalide lead perovskites / E. Welch, L. Scolfaro, A. Zakhidov // AIP ADVANCES – 2016. – Vol. 6. – P. 125037. https://doi.org/10.1063/1.4972341
  15. Garrity K. F. Pseudopotentials for high-throughput DFT calculations / K. F. Garrity, J. W. Bennett, K. M. Rabe, D. Vanderbilt // Comp. Mater. Sci. – 2014. –Vol. 81. – P. 446. https://doi.org/10.1016/j.commatsci.2013.08.053
  16. Monkhorst H. J. Special points for Brillouin-zone integrations / H. J. Monkhorst, J. D. Pack // Phys. Rev. B – 1976. – Vol. 13. – P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  17. Mordecai A. Nonlinear Programming: Analysis and Methods, 03rd Edition / A. Mordecai – Dover, New York, 2003. – 544 p.
  18. Ambrosch-Draxl C, Linear Optical Properties of Solids within the Full-Potential Linearized Augmented Planewave Method / C. Ambrosch-Draxl, J. O. Sofo // Comput. Phys. Commun. – 2006. – Vol. 175. – P. 1−14. https://doi.org/10.1016/j.cpc.2006.03.005
  19. Adachi S. Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors / S. Adachi – John Wiley & Sons, 2009. – 400 p.
  20. Poglitsch A. Dynamic disorder in methylammoniumtri-halogenoplumbates (ii) observed by millimeterwave spectroscopy / A. Poglitsch, D. Weber // J. Chem. Phys. – 1987. – Vol. 87 (11). – P. 6373–6378. https://doi.org/10.1063/1.453467.
  21. Noh J. H. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells / J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok // Nano Lett. – 2013. – Vol. 13. – P. 1764–1769. https://doi.org/10.1021/nl400349b
  22. Swainson I. P. Phase transitions in the perovskite methylammonium lead bromide, CH3ND3PbBr3 / I. P. Swainson, R. P. Hammond, C. Soulliere, O. Knop, W. Massa // J. Solid State Chem. – 2003. – Vol. 176 (1). – P. 97–104. https://doi.org/10.1016/S0022-4596(03)00352-9
  23. Ye Y. Nature of the band gap of halide perovskites ABX3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): First-principles calculations / Y. Ye, X. Run, X. Hai-Tao, H. Feng, X. Fei, W. Lin-Jun // Chinese Phys. B – 2015. – Vol. 24. – P. 116302. https://doi.org/10.1088/1674-1056/24/11/116302
  24. Melissen S. T. A. G. Electronic properties of PbX3CH3NH3 (X=Cl, Br, I) compounds for photovoltaic and photocatalytic applications / S. T. A. G. Melissen, F. Labat, P. Sautet, T. Le Bahers // Phys. Chem. Chem. Phys. – 2015. – Vol. 17. – P. 2199–2209. https://doi.org/10.1039/C4CP04666H
  25. Yi Z. Theoretical Studies on the structural, electronic and optical properties of orthorhombic perovskites CH3NH3PbX3(X=I,Br,Cl) / Z. Yi, Z. Fang // J. Phys. Chem. Solids – 2017. – Vol. 110. – P. 145–151. https://doi.org/10.1016/j.jpcs.2017.05.005
  26. Jishi R. A. Modeling of Lead Halide Perovskites for Photovoltaic Applications / R. A. Jishi, O. B. Ta, A. A. Sharif // J. Phys. Chem. C, vol. 118, pp. 28344−28349, 2014. https://doi.org/10.48550/arXiv.1405.1706
  27. Feng J. Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3; (X = I; Br) phases predicted from HSE06 / J. Feng, B. Xiao // J. Phys. Chem. Lett. – 2014. – Vol. 5. – P. 1278–1282. https://doi.org/10.1021/jz500480m
  28. Mao X. First-Principles Screening of All-Inorganic Lead-Free ABX3 Perovskites / X. Mao, L. Sun, T. Wu, T. Chu, W. Deng, K. Han // J. Phys. Chem. C – 2018. – Vol. 122. – P. 7670−7675. https://doi.org/10.1021/acs.jpcc.8b02448
  29. Sun P. P. Theoretical Insights into a Potential Lead-Free Hybrid Perovskite: Substituting Pb2+ with Ge2+ / P. P. Sun, Q. S. Li, L. N. Yang, Z. S. Li // Nanoscale – 2016. – Vol. 8. – P. 1503−1512. https://doi.org/10.1039/C5NR05337D
  30. Umari P. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications / P. Umari, E. Mosconi, F. D. Angelis // Sci. Rep. – 2014. – Vol. 4. – P. 4467. https://doi.org/10.1038/srep04467
  31. Tanaka K. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 and CH3NH3PbI3 / K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura // Solid State Commun. – 2003. – Vol. 127. – P. 619–623. https://doi.org/10.1016/S0038-1098(03)00566-0
  32. Wang D.-L. Highly Efficient Light Management for Perovskite Solar Cells / D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, G. Su // Sci. Rep. – 2016. – Vol. 6. – P. 18922. https://doi.org/10.1038/srep18922
  33. Sahli F. Fully Textured Monolithic Perovskite/Silicon Tandem Solar Cells with 25.2% Power Conversion Efficiency / F. Sahli, J. Werner, B. A. Kamino, Bräuninger, M. R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto // Nat. Mater. – 2018. – Vol. 17. – P. 820−826. https://doi.org/10.1038/s41563-018-0115-4




DOI: http://dx.doi.org/10.30970/eli.18.7

Refbacks

  • There are currently no refbacks.