FEATURES OF MECHANICALLY STIMULATED CHANGES IN THE ELECTRICAL CONDUCTIVITY OF p-Si CRYSTALS AFTER THE ACTION OF A MAGNETIC FIELD

Bohdan Pavlyk, R. Lys, J. Shykorjak, D. Slobodzyan, M. Kushlyk, I. Matvijishyn

Abstract


The research investigated mechanically stimulated changes in resistance (R/R0 = f(σ)) of p-type conductivity single-crystal silicon samples that underwent long-term (~ 600 days) magnetic treatment. The permanent magnetic field induction was В = 0.354 Т. It was established that the action of the magnetic field leads to the appearance of a characteristic maximum on the curves R/R0 = f(σ) at the initial stage of uniaxial elastic deformation. A similar effect was observed after small doses of X-irradiation (D = 312 Gy).

It was found that the position and magnitude of the characteristic maximum on the R/R0 = f(σ) curves significantly depend on the time that has passed since the previous cycle of deformation (compression-decompression). In particular, it is shown that the characteristic maximum is not observed if this time does not exceed 20 hours. It was also found that with an increase in time (which has passed since the previous deformation cycle), the value of the maximum increases, and its position shifts towards higher mechanical stresses σ. At the same time, the amount of residual resistance at the beginning of the next deformation cycle also decreases. So, it can be seen that the relaxation processes, which are accompanied by a change in the value of the residual resistance of the crystal, do not have a clear time periodicity, but there is a clear tendency to its increase in value.

The change of the defective background in the crystal under the action of the load and the magnetic field affects the concentration and mobility of the charge carriers, which are related to the electrical conductivity of the semiconductor. A characteristic feature of dislocations in silicon crystals is the presence around them of areas with an increased concentration of point defects (Cottrell clouds).

It has been confirmed that the long-term effect of a constant magnetic field on experimental p-Si crystals leads to the disintegration of defects, such as hydrogen-containing and oxygen-containing complexes (Si–O–Si, Si–H2, O–Si–O, Si–O–C, Si –CH3, H–OH, H2O, Si–OH, etc.). As a result of such decay, the formed hydrogen can migrate in the elastic stress fields of the near-surface layer, passivating the acceptor bonds. This, accordingly, leads to a decrease in the surface electrical conductivity of the experimental samples.

Key words: silicon, magnetic field, dislocations, uniaxial elastic deformation.


References


  1. Watkins G.D. Intrinsic defects in silicon / G.D. Watkins // Materials Science in Semiconductor Processing. – 2000. – Vol. 3, No 4. – P. 227–235.
  2. Devine R.A.B. Oxygen gettering and oxide degradation during annealing of Si/SiO2/Si structures / R.A.B. Devine, W.L. Warren, J.B. Xu [et al.] // Journal of Applied Physics. – 1995. – Vol. 77, No 1. – P. 175–186.
  3. Fleetwood D.M. Total-ionizing-dose effects, border traps, and 1/f noise in emerging MOS technologies / D.M. Fleetwood // IEEE Transactions on Nuclear Science. – 2020. – Vol. 67, No 7. – P. 1216–1240.
  4. Srour J.R. Displacement damage effects in irradiated semiconductor devices / J.R. Srour, J.W. Palko // IEEE Transactions on Nuclear Science. – 2013. – Vol. 60, No 3. – P. 1740–1766.
  5. Wang R. Cut-off degradation of output current induced by high fluence neutron radiation in high-voltage silicon-on-insulator lateral double-diffused MOSFET / R. Wang, M. Qiao, Y. Wang [et al.] // IEEE Electron Device Letters. – 2022. – Vol. 43, No 1. – P. 108–111.
  6. Claeys C. Basic radiation damage mechanisms in semiconductor materials and devices / C. Claeys, E. Simoen // Radiation Effects in Advanced Semiconductor Materials and Devices. – 2022. – P. 9–52.
  7. Ceponis T.Study of radiation-induced defects in p-type Si1−xGeX diodes before and after annealing / T. Ceponis, S. Lastovskii, L. Makarenko [et al.] // Materials. – 2022. – Vol. 13. – P. 5684 (1-10).
  8. Yeritsyan H.N. Clusters of radiation defects in silicon crystals / H.N. Yeritsyan, A.A. Sahakyan, N.E. Grigoryan [et al.] // Journal of Modern Physics. – 2015. – Vol. 6. – P. 1270–1276.
  9. Макара В.А. Стимулированное воздействием рентгеновского излучения и магнитного поля изменение физических характеристик кристаллов кремния / В.А. Макара, Л.П. Стебленко, А.Н. Крит [и др.] // Физика твердого тела. – 2012. – Т. 54, Вып. 7. – С. 1356–1360.
  10. Yao P. First-principles calculations of silicon interstitial defects at the amorphous-SiO2/Si interface / P. Yao, Y. Song, X. Zuo // The Journal of Physical Chemistry. – 2021. – Vol. 125. – P. 15044–15051.
  11. Павлик Б.В. Вплив магнетного поля на електрофізичні характеристики поверхнево-бар’єрних структур Bi-Si-Al / Б.В. Павлик, Л.П. Стебленко, О.В. Коплак [та ін.] // Металлофизические новейшие технологии. – 2009. – Т.31, № 9. – С. 1169-1178.
  12. Федосов А.В. Вплив одновісної деформації на заповнення рівня, пов’язаного з А-центром у кристалах n-Si / А.В. Федосов, С.В. Луньов, С.А. Федосов // Український фізичний журнал. – 2011. – Т. 56, № 1. – С. 70–74.
  13. Koplak O.V. Kinetics of oxidation of subsurface layers of 29Si-enriched silicon in a magnetic field / O.V. Koplak, A.I. Dmitriev, R.B. Morgunov // Physics of the solid state. – 2014. – Vol. 56. – P. 1443–1448.
  14. Skvortsov A.A. Effect of constant magnetic field on dislocation anharmonicity in silicon / A.A. Skvortsov, A.V. Karizin, L.V. Volkova, M.V. Koryachko // Physics of the solid state. – 2015. – Vol. 57, No 5 – P. 914–918.
  15. Павлик Б.В. Особливості механо-стимульованих змін електропровідності Х-опромінених кристалів p-Si / Б.В. Павлик, Р.М. Лис, Р.І. Дідик [та ін.] // Електроніка та інформаційні технології. – 2020 – Вип.14 – С. 88–94.
  16. Lys R. Features of changes in the electrical resistance of p-Si crystals under the action of an elastic one-axial mechanical load and a magnetic field / R. Lys, B. Pavlyk, R. Didyk [et al.] // Applied Nanoscience. – 2019. – Vol.9, No8. – P. 1775 – 1779.
  17. Lys R. Effect of elastic deformation and the magnetic field on the electrical conductivity of p-Si crystals / R. Lys, B. Pavlyk, R. Didyk [et al.] // Applied Nanoscience. – 2018. – Vol.8, No4. – P. 885- 890.
  18. Zhang X. Effect of magnetic field on the nanohardness of monocrystalline silicon and its mechanism / X. Zhang, Z.P. Cai // JETP Letters. – 2018. – Vol.108. – P. 23-29.
  19. Павлик Б. Вплив пружної деформації на електропровідність зразків p-Si з різною концентрацією дислокацій / Б. Павлик, Р. Дідик, Р. Лис, Й. Шикоряк // Електроніка та інформаційні технології. – 2016. – Вип. 6. – С. 39-44.
  20. Косевич А. М. Теория кристаллической решётки / А.М. Косевич. – К.: Наукова думка, 1988. – 304 с.
  21. Стебленко Л.П. Зміна мікротвердості кристалів кремнію, індукована слабо інтенсивним рентгенівським випромінюванням / Л.П. Стебленко, С.М. Науменко, О.М. Кріт [та ін.] // Вісник Київського університету. Серія: фізико-математичні науки. – 2009. – № 3. – С. 44–48.
  22. Красильников В.В. Особенности самоорганизации дислокационно-вакансионного ансамбля в облеченных деформируемых материалах / В.В. Красильников, В.Ф. Клепиков, С.Е. Савотченко А.А. Пархоменко // Вопросы атомной науки и техники. Серия: физика радиационных повреждений и радиационное материаловедение. – 2005. – № 5. – С. 26–32.
  23. Островский И.В. Влияние ультразвуковой обработки на подвижность коротких дислокаций в кристаллах кремния / И.В. Островский, Л.П. Стебленко, А.Б. Надточий // ФТТ. – 2000. – Т. 42, Вып. 3. – С. 478–481.
  24. Надточій В.О. Мікропластичність алмазоподібних кристалів (Si, Ge, GaAs, InAs) : автореф. дис. на здобуття наук. ступеня доктора фіз.-мат. наук: спец. 01.04.07 “Фізика твердого тіла” / В.О. Надточій. – Харків, 2006. – 38 с.




DOI: http://dx.doi.org/10.30970/eli.18.5

Refbacks

  • There are currently no refbacks.