ПРО ДЕЯКІ ПИТАННЯ РОЗВ"ЯЗУВАННЯ ЛІНІЙНИХ РІВНЯНЬ, ЯКІ МАЮТЬ НЕЄДИНИЙ РОЗВ"ЯЗОК
Анотація
Some boundary value problems for Laplace equation are reduced to integral and integro-differential equations, whose solutions are not unique. To solve such problems it is convenient to use modified boundary equations, the solutions of which are unique. This gives us possibility to obtain densities of the integral representations of solutions of the corresponding boundary value problems. In this paper we prove the correctness of the obtained modified equations, in particular existence and uniqueness of solutions in the corresponding functional spaces with certain additional conditions. To do this, we consider the general case of linear operator equations whose operators have a nonzero kernel. Various cases of such operators are investigated. We obtained necessary and sufficient conditions of correctness for received modified operator equations. As examples we consider exterior Dirichlet and interior Neumann boundary value problems for the two-dimensional Laplace equation.
Повний текст:
PDFПосилання
1. Мазья В.Г. Граничные интегральные уравнения
/В.Г.Мазья //Современные проблемы математики. Фундаментальные направления. Итоги науки и техники ВИНИТИ АН СССР.-- Москва: 1988.-- Т.27.-- С.131--228.
2. Михлин С.Г. Курс математической физики /С.Г.Михлин.--Москва: Наука, 1968.-- 576 с.
3. Costabel M. Boundary integral operators on Lipschitz domains: elementary results /M.Costabel //SIAM J. Math. Anal.-- 1988.-- Vol.19--P. 613--626.
4. Lions J.L. Nonhomogeneuos boundary-value problems and applications
/J.L. Lions, E. Magenes.-- Springer-Verlag, 1972.-- Vol. 1.
5. McLean W. Strongly Elliptic Systems and Boundary Integral Equations
/W. McLean.-- Cambridge University Press, 2000.-- 357 p.
DOI: http://dx.doi.org/10.30970/vam.2020.28.11014
Посилання
- Поки немає зовнішніх посилань.