BIOCLIMATIC CONSTRAINTS AND EDAPHIC PREFERENCES OF WHEAT: IMPLICATIONS FOR ENVIRONMENTAL SUITABILITY FORECASTING UNDER CLIMATE CHANGE
DOI: http://dx.doi.org/10.30970/sbi.1904.859
Abstract
Background. Understanding how environmental factors influence the spatial suitability of wheat is critical for sustaining productivity under climate change. In regions like Ukrainian Polissia and the Forest-Steppe, where climatic and soil gradients are strong, changes in agroecological conditions may substantially affect cultivation potential. While global studies exist, regional assessments that integrate both climate and soil data remain limited. Identifying key environmental drivers and their response patterns supports targeted adaptation and land use planning, helping ensure food security in a changing climate.
Materials and Methods. The spatial suitability of wheat cultivation in the Polissia and Forest-Steppe regions of Ukraine was assessed using agroecological modelling. We compiled a dataset of observed wheat cover from official agricultural statistics. The environmental predictors included 19 bioclimatic variables (WorldClim), soil properties (texture, pH, and organic matter content), and topographic factors. Multicollinearity was reduced via principal component analysis and correlation filtering. Four modelling approaches: ordinary least squares (OLS), ridge regression, generalised additive models (GAM), and random forest (RF), were applied to identify key predictors and response patterns.
Results and Discussion. Among the tested models, random forest provided the highest accuracy, followed by GAM and ridge regression, while OLS lagged behind. Key predictors of wheat suitability included warm-quarter temperature (bio10), growing seasonal precipitation, and soil factors, such as pH, clay content, and bulk density. Wheat showed clear sensitivity to high summer temperatures, with response curves revealing nonlinear, bell-shaped patterns indicative of ecological optima. Climate projections suggest a northward shift and fragmentation of suitable areas, especially under SSP3-7.0 and SSP5-8.5 scenarios. While marginal gains are possible short-term, long-term suitability is likely to decline in the southern and central zones. These findings underscore the need to integrate climatic and soil data in regional planning and to support adaptation through targeted crop relocation and variety selection.
Conclusion. This study demonstrates that the spatial suitability of wheat in Ukraine’s Polissia and Forest-Steppe regions is strongly influenced by both bioclimatic and edaphic factors. Random forest modelling proved the most effective for capturing complex environmental responses. Climate change projections indicate a northward shift and reduction of suitable areas, emphasising the need for adaptive land-use strategies. Integrating climate and soil data into agroecological assessments is critical for anticipating risks, guiding crop management decisions, and ensuring long-term food security in vulnerable agricultural landscapes.
Keywords
Full Text:
PDFReferences
| An-Vo, D.-A., Radanielson, A. M., Mushtaq, S., Reardon-Smith, K., & Hewitt, C. (2021). A framework for assessing the value of seasonal climate forecasting in key agricultural decisions. Climate Services, 22, 100234. doi:10.1016/j.cliser.2021.100234 Crossref ● Google Scholar | ||||
| ||||
| Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 Crossref ● Google Scholar | ||||
| ||||
| Chawla, R., & Balasaheb, K. S. (2023). Optimizing water use efficiency and yield of wheat crops through integrated irrigation and nitrogen management: a comprehensive review. International Journal of Environment and Climate Change, 13(11), 4059-4067. doi:10.9734/ijecc/2023/v13i113585 Crossref ● Google Scholar | ||||
| ||||
| Chetvertak, T., Diuzhykova, T., Hryshko, S., Nepsha, O., & Tutova, H. (2025). The precipitation levels during the warmest quarter are the primary factor influencing the spatial distribution of Opatrum sabulosum. Biosystems Diversity, 33(1), e2507. doi:10.15421/012507 Crossref ● Google Scholar | ||||
| ||||
| Collins, B., Lai, Y., Grewer, U., Attard, S., Sexton, J., & Pembleton, K. G. (2024). Evaluating the impact of weather forecasts on productivity and environmental footprint of irrigated maize production systems. Science of The Total Environment, 954, 176368. doi:10.1016/j.scitotenv.2024.176368 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Datta, P., Behera, B., & Rahut, D. B. (2022). Climate change and Indian agriculture: a systematic review of farmers' perception, adaptation, and transformation. Environmental Challenges, 8, 100543. doi:10.1016/j.envc.2022.100543 Crossref ● Google Scholar | ||||
| ||||
| Fu, Y., Tian, Z., Amoozegar, A., & Heitman, J. (2019). Measuring dynamic changes of soil porosity during compaction. Soil and Tillage Research, 193, 114-121. doi:10.1016/j.still.2019.05.016 Crossref ● Google Scholar | ||||
| ||||
| Ganesan, M., Andavar, S., & Raj, R. S. P. (2021). Prediction of land suitability for crop cultivation using classification techniques. Brazilian Archives of Biology and Technology, 64, e21200483. doi:10.1590/1678-4324-2021200483 Crossref ● Google Scholar | ||||
| ||||
| Kayode Ayinde, O. O. A., & Nwosu, U. I. (2021). Solving multicollinearity problem in linear regression model: the review suggests new idea of partitioning and extraction of the explanatory variables. Journal of Mathematics and Statistics Studies, 2(1), 12-20. doi:10.32996/jmss.2021.2.1.2 Crossref ● Google Scholar | ||||
| ||||
| Kettlewell, P., Byrne, R., & Jeffery, S. (2023). Wheat area expansion into northern higher latitudes and global food security. Agriculture, Ecosystems & Environment, 351, 108499. doi:10.1016/j.agee.2023.108499 Crossref ● Google Scholar | ||||
| ||||
| Klemm, T., & McPherson, R. A. (2017). The development of seasonal climate forecasting for agricultural producers. Agricultural and Forest Meteorology, 232, 384-399. doi:10.1016/j.agrformet.2016.09.005 Crossref ● Google Scholar | ||||
| ||||
| Kunah, O. M., Pakhomov, O. Y., Zymaroieva, А. А., Demchuk, N. I., Skupskyi, R. M., Bezuhla, L. S., & Vladyka, Y. P. (2018). Agroeconomic and agroecological aspects of spatial variation of rye (Secale cereale) yields within Polesia and the Forest-Steppe zone of Ukraine: the usage of geographically weighted principal components analysis. Biosystems Diversity, 26(4), 276-285. doi:10.15421/011842 Crossref ● Google Scholar | ||||
| ||||
| Kunakh, O., Lisovets, O., & Zhukov, O. (2024). Hemeroby and naturalness differ in spatial patterns: the case of aquatic macrophytes. International Journal of Environmental Studies, 81(6), 2692-2706. doi:10.1080/00207233.2024.2379117 Crossref ● Google Scholar | ||||
| ||||
| Lai, J., Tang, J., Li, T., Zhang, A., & Mao, L. (2024). Evaluating the relative importance of predictors in Generalized Additive Models using the gam.hp R package. Plant Diversity, 46(4), 542-546. doi:10.1016/j.pld.2024.06.002 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Lisovets, O., Khrystov, O., Kunakh, O., & Zhukov, O. (2024). Application of hemeroby and naturalness indicators for monitoring the aquatic macrophyte communities in protected areas. Biosystems Diversity, 32(2), 270-277. doi:10.15421/012429 Crossref ● Google Scholar | ||||
| ||||
| Liu, Y., Liu, R., Feng, Z., Hu, R., Zhao, F., & Wang, J. (2024). Regulation of wheat growth by soil multifunctionality and metagenomic-based microbial functional profiles under mulching treatments. Science of The Total Environment, 920, 170881. doi:10.1016/j.scitotenv.2024.170881 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Marino, S. (2023). Understanding the spatio-temporal behavior of crop yield, yield components and weed pressure using time series Sentinel-2-data in an organic farming system. European Journal of Agronomy, 145, 126785. doi:10.1016/j.eja.2023.126785 Crossref ● Google Scholar | ||||
| ||||
| Molozhon, K. O., Lisovets, O. I., Kunakh, O. M., & Zhukov, O. V. (2023). Increased soil penetration resistance drives degrees of hemeroby in vegetation of urban parks. Biosystems Diversity, 31(4). doi:10.15421/012349 Crossref ● Google Scholar | ||||
| ||||
| Mykhailyuk, T., Lisovets, O., & Tutova, H. (2023a). The importance of terrain factors in the spatial variability of plant cover diversity in a steppe gully. Biosystems Diversity, 31(4), 470-483. doi:10.15421/012356 Crossref ● Google Scholar | ||||
| ||||
| Mykhailyuk, T., Lisovets, O., & Tutova, H. (2023b). Steppe vegetation islands in the gully landscape system: hemeroby, naturalness and phytoindication of ecological regimes. Regulatory Mechanisms in Biosystems, 14(4), 581-594. doi:10.15421/022385 Crossref ● Google Scholar | ||||
| ||||
| Nykytiuk, Y., Kravchenko, O., Komorna, O., Bambura, V., & Seredniak, D. (2025). Global climate change will lead to a decrease in the erosion resistance of Polissya and Forest-Steppe soils. Biosystems Diversity, 33(1), e2502. doi:10.15421/012502 Crossref ● Google Scholar | ||||
| ||||
| Panchenko, K., Podorozhnyi, S., & Diuzhykova, T. (2024). Predicting organic carbon in European soils: only in Southern Ukraine can we expect an increase in humus content. Regulatory Mechanisms in Biosystems, 15(1), 24-30. doi:10.15421/022403 Crossref ● Google Scholar | ||||
| ||||
| Pavlou, M., Ambler, G., Seaman, S., De Iorio, M., & Omar, R. Z. (2016). Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events. Statistics in Medicine, 35(7), 1159-1177. doi:10.1002/sim.6782 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Ponomarenko, O., Komlyk, Y., Tutova, H., & Zhukov, O. (2024). Landscape diversity mapping allows assessment of the hemeroby of bird species in a modern industrial metropolis. Biosystems Diversity, 32(4), 470-483. doi:10.15421/012449 Crossref ● Google Scholar | ||||
| ||||
| Romashchenko, M., Bohaienko, V., Shatkovskyi, A., Saidak, R., Matiash, T., & Kovalchuk, V. (2023). Optimisation of crop rotations: a case study for corn growing practices in forest-steppe of Ukraine. Journal of Water and Land Development, 56(I-III), 194-202. doi:10.24425/jwld.2023.143760 Crossref ● Google Scholar | ||||
| ||||
| Roustaei, N. (2024). Application and interpretation of linear-regression analysis. Medical Hypothesis Discovery and Innovation in Ophthalmology, 13(3), 151-159. doi:10.51329/mehdiophthal1506 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Ruane, A. C., Phillips, M., Jägermeyr, J., & Müller, C. (2024). Non-linear climate change impacts on crop yields may mislead stakeholders. Earth's Future, 12(4), e2023ef003842. doi:10.1029/2023ef003842 Crossref ● Google Scholar | ||||
| ||||
| Sable, N. P., Shukla, V. K., Mahalle, P. N., & Khedkar, V. (2025). Optimizing agricultural yield: a predictive model for profitable crop harvesting based on market dynamics. Frontiers in Computer Science, 7, 1567333. doi:10.3389/fcomp.2025.1567333 Crossref ● Google Scholar | ||||
| ||||
| Sanjaya, I., Mantoro, T., Asian, J., Kharisma, I. L., & Thohir, M. I. (2024). Forecasting cropping patterns to increase crop yields food and horticulture using a machine approach learning. BIO Web of Conferences, 148, 03002. doi:10.1051/bioconf/202414803002 Crossref ● Google Scholar | ||||
| ||||
| Semenov, M. A., & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3-4), 265-283. doi:10.1016/0168-1923(94)05078-k Crossref ● Google Scholar | ||||
| ||||
| Stefanovska, T., Skwiercz, A., Pidlisnyuk, V., Newton, R. A., Zhukov, O., Ust'ak, S., Szczech, M., & Kowalska, B. (2025). The interactions between nematode and microbial communities offer significant insights into the impact of organic amendments on the productivity of Miscanthus × giganteus cultivated on marginal lands. Biosystems Diversity, 33(1), e2508. doi:10.15421/012508 Crossref ● Google Scholar | ||||
| ||||
| Stefanovska, T., Skwierzc, A., Zhukov, O., & Pidlisnyuk, V. (2024). Soil nematodes as a monitoring tool of bioenergy crop production management: the case of Miscanthus giganteus cultivation on different soil types. Biosystems Diversity, 32(2), 217-224. doi:10.15421/012423 Crossref ● Google Scholar | ||||
| ||||
| Tamasiga, P., Ouassou, E. houssin, Onyeaka, H., Bakwena, M., Happonen, A., & Molala, M. (2023). Forecasting disruptions in global food value chains to tackle food insecurity: the role of AI and big data analytics - a bibliometric and scientometric analysis. Journal of Agriculture and Food Research, 14, 100819. doi:10.1016/j.jafr.2023.100819 Crossref ● Google Scholar | ||||
| ||||
| Tang, F. H. M., Nguyen, T. H., Conchedda, G., Casse, L., Tubiello, F. N., & Maggi, F. (2024). CROPGRIDS: a global geo-referenced dataset of 173 crops. Scientific Data, 11(1), 413. doi:10.1038/s41597-024-03247-7 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Thapa, S., Xue, Q., Jessup, K. E., Rudd, J. C., Liu, S., Marek, T. H., Devkota, R. N., Baker, J. A., & Baker, S. (2019). Yield determination in winter wheat under different water regimes. Field Crops Research, 233, 80-87. doi:10.1016/j.fcr.2018.12.018 Crossref ● Google Scholar | ||||
| ||||
| Trifanova, M., Zadorozhna, G., Novitsky, R., Ponomarenko, O., Makhina, V., Khrystov, O., Ruchiy, V., & Zhukov, O. (2023). How much space is needed for biodiversity conservation? Biosystems Diversity, 31(4), 521-534. doi:10.15421/012362 Crossref ● Google Scholar | ||||
| ||||
| Tutova, H., Ruchiy, V., Khrystov, O., Lisovets, O., Kunakh, O., & Zhukov, O. (2025). Influence of morphology and functional properties of floodplain water bodies on species diversity of macrophyte communities. Regulatory Mechanisms in Biosystems, 33(1), e25012. doi:10.15421/0225012 Crossref ● Google Scholar | ||||
| ||||
| van Verseveld, C. J. W., & Gebert, J. (2020). Effect of compaction and soil moisture on the effective permeability of sands for use in methane oxidation systems. Waste Management, 107, 44-53. doi:10.1016/j.wasman.2020.03.038 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Veen, B. W., & Boone, F. R. (1990). The influence of mechanical resistance and soil water on the growth of seminal roots of maize. Soil and Tillage Research, 16(1-2), 219-226. doi:10.1016/0167-1987(90)90031-8 Crossref ● Google Scholar | ||||
| ||||
| Wang, J., Qian, R., Li, J., Wei, F., Ma, Z., Gao, S., Sun, X., Zhang, P., Cai, T., Zhao, X., Chen, X., & Ren, X. (2024). Nitrogen reduction enhances crop productivity, decreases soil nitrogen loss and optimize its balance in wheat-maize cropping area of the Loess Plateau, China. European Journal of Agronomy, 161, 127352. doi:10.1016/j.eja.2024.127352 Crossref ● Google Scholar | ||||
| ||||
| Westerveld, J. J. L., van den Homberg, M. J. C., Nobre, G. G., van den Berg, D. L. J., Teklesadik, A. D., & Stuit, S. M. (2021). Forecasting transitions in the state of food security with machine learning using transferable features. Science of The Total Environment, 786, 147366. doi:10.1016/j.scitotenv.2021.147366 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Yakovenko, V., & Zhukov, O. (2021). Zoogenic structure aggregation in steppe and forest soils. In: Y. Dmytruk & D. Dent (Eds.), Soils under stress (pp. 111-127). Springer International Publishing, Cham. doi:10.1007/978-3-030-68394-8_12 Crossref ● Google Scholar | ||||
| ||||
| Yin, X., Kropff, M. J., McLaren, G., & Visperas, R. M. (1995). A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology, 77(1-2), 1-16. doi:10.1016/0168-1923(95)02236-q Crossref ● Google Scholar | ||||
| ||||
| Zelenova, V. O., Zelenov, P. V., & Tutova, G. F. (2024). Bioindication potentials of the grass stand and soil macrofauna for assessing the level of anthropogenic transformation of an urban park are complementary. Biosystems Diversity, 32(3), 306-313. doi:10.15421/012433 Crossref ● Google Scholar | ||||
| ||||
| Zymaroieva, A., Zhukov, O., Fedonyuk, T., & Pinkin, A. (2019). Application of geographically weighted principal components analysis based on soybean yield spatial variation for agro-ecological zoning of the territory. Agronomy Research, 17(6), 2460-2473. doi:10.15159/ar.19.208 Crossref ● Google Scholar | ||||
| ||||
| Zymaroieva, A., Zhukov, O., Romanchuck, L., & Pinkin, A. (2019). Spatiotemporal dynamics of cereals grains and grain legumes yield in Ukraine. Bulgarian Journal of Agricultural Science, 25(6), 1107-1113. Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Yurii Nykytiuk, Oksana Kravchenko, Dmytro Vyskushenko, Andriy Pitsil, Oksana Komorna, Igor Bezvershuck

This work is licensed under a Creative Commons Attribution 4.0 International License.
