KINETIC MODELLING OF SULFATE ION TRANSPORT THROUGH BAND 3 PROTEIN OF ERYTHROCYTES

Olga Dotsenko


DOI: http://dx.doi.org/10.30970/sbi.1904.856

Abstract


Background. Assessment of the kinetic properties of ion transport involving band 3 protein (B3p, AE1) is a sensitive tool for monitoring functional changes in erythrocytes under the influence of external factors. The aim of the work was to study the rate of H+,SO42-/Cl exchange in erythrocytes under osmotic and metabolic stress. To achieve this goal, a mathematical model was developed that uses parameter identification methods based on the results of experimental studies.
Materials and Methods. Erythrocytes were incubated in a medium of Na-phosphate buffer (0.015 M, pH 7.4) containing 0.15 M NaCl without glucose. During 3 hours of incubation, the ability of cells to anion exchange, the amount of uptake of SO42-, the level of oxidation of sulfhydryl groups and the content of ligand forms of hemoglobin (Hb) in the membrane-bound fraction were tested. To assess anion exchange, a mathematical model was created that involves the search for kinetic parameters using search optimization methods.
Results. The results obtained indicate that under the influence of osmotic and metabolic stress and hypoxia, the work of the anion exchanger AE1 slows down, which is reflected in a decrease in the exchange rate constant HCO3/Cl, Vmax, H+,SO42-/Clexchange. The predicted decrease in the content of SO42--ions in cells is has been confirmed by experimental data. According to the modelling results, incubation of cells leads to activation of the Na+,K+,2Cl cotransporter and Na+/H+ exchanger, and inhibition of the flux through the K+,2Cl cotransporter. Assessment of the composition of membrane-bound hemoglobin indicates that the decrease in the speed of AE1 is due to the formation of the deoxyHb-B3p complex and oxidative processes in cells.
Conclusion. The results of mathematical modelling and experimental data indicate the existence of universal O2-dependent mechanisms of regulation of molecular processes in erythrocytes that are based on competition between deoxyHb and other proteins for binding sites with band 3 protein.


Keywords


sulfate uptake, anion transport, AE1, chloride-bicarbonate antiporters, anion exchange, membrane-bound hemoglobin, ligand forms of hemoglobin, hemichrome, ferrylhemoglobin

Full Text:

PDF

References


Al-Samir, S., Papadopoulos, S., Scheibe, R. J., Meißner, J. D., Cartron, J., Sly, W. S., Alper, S. L., Gros, G., & Endeward, V. (2013). Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1. The Journal of Physiology, 591(20), 4963-4982. doi:10.1113/jphysiol.2013.251181
CrossrefPubMedPMCGoogle Scholar

Attia, A. M. M., Ibrahim, F. A. A, Abd El-Latif, N. A., Aziz, S. W., & Moussa, S. A. A. (2015). Biophysical study on conformational stability against autoxidation of oxyhemoglobin and erythrocytes oxidative status in humans and rats. Wulfenia Journal, 22(12), 264-281.
Google Scholar

Barshtein, G., Livshits, L., Gural, A., Arbell, D., Barkan, R., Pajic-Lijakovic, I., & Yedgar, S. (2024). Hemoglobin binding to the red blood cell (RBC) membrane is associated with decreased cell deformability. International Journal of Molecular Sciences, 25(11), 5814. doi:10.3390/ijms25115814
CrossrefPubMedPMCGoogle Scholar

Bidani, A., Crandall, E. D., & Forster, R. E. (1978). Analysis of postcapillary pH changes in blood in vivo after gas exchange. Journal of Applied Physiology, 44(5), 770-781. doi:10.1152/jappl.1978.44.5.770
CrossrefPubMedGoogle Scholar

Bertocchio, J. P., Genetet, S., Da Costa, L., Walsh, S. B., Knebelmann, B., Galimand, J., Bessenay, L., Guitton, C., De Lafaille, R., Vargas-Poussou, R., Eladari, D., & Mouro-Chanteloup, I. (2020). Red blood cell AE1/band 3 transports in dominant distal renal tubular acidosis patients. Kidney International Reports, 5(3), 348-357. doi:10.1016/j.ekir.2019.12.020
CrossrefPubMedPMCGoogle Scholar

Bruce, L. J., Beckmann, R., Ribeiro, M. L., Peters, L. L., Chasis, J. A., Delaunay, J., Mohandas, N., Anstee, D. J., & Tanner, M. J. (2003). A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood, 101(10), 4180-4188. doi:10.1182/blood-2002-09-2824
CrossrefPubMedGoogle Scholar

Cilek, N., Ugurel, E., Goksel, E., & Yalcin, O. (2023). Signaling mechanisms in red blood cells: a view through the protein phosphorylation and deformability. Journal of Cellular Physiology, 239(3), e30958. doi:10.1002/jcp.30958
CrossrefPubMedGoogle Scholar

Dotsenko, О. І., & Taradina, G. V. (2024). Ion homeostasis in the regulation of intracellular pH and volume of human erythrocytes. Biophysical Bulletin, 51, 7-25. doi:10.26565/2075-3810-2024-51-01
CrossrefGoogle Scholar

Ferru, E., Giger, K., Pantaleo, A., Campanella, E., Grey, J., Ritchie, K., Vono, R., Turrini, F., & Low, P. S. (2011). Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood, 117(22), 5998-6006. doi:10.1182/blood-2010-11-317024
CrossrefPubMedPMCGoogle Scholar

Galtieri, A., Tellone, E., Romano, L., Misiti, F., Bellocco, E., Ficarra, S., Russo, A., Di Rosa, D., Castagnola, M., Giardina, B., & Messana, I. (2002). Band-3 protein function in human erythrocytes: effect of oxygenation-deoxygenation. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1564(1), 214-218. doi:10.1016/s0005-2736(02)00454-6
CrossrefPubMedGoogle Scholar

Geers, C., & Gros, G. (2000). Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiological Reviews, 80(2), 681-715. doi:10.1152/physrev.2000.80.2.681
CrossrefPubMedGoogle Scholar

Gimsa, J. (1995). Red cell echinocytogenesis is correlated to the recruitment of external band-3 conformations. Bioelectrochemistry and Bioenergetics, 38(1), 99-103. doi:10.1016/0302-4598(95)01794-f
CrossrefGoogle Scholar

Jennings, M. L. (2005). Evidence for a second binding/transport site for chloride in erythrocyte anion transporter AE1 modified at glutamate 681. Biophysical Journal, 88(4), 2681-2691. doi:10.1529/biophysj.104.056812
CrossrefPubMedPMCGoogle Scholar

Jennings, M. L. (2013). Transport of H2S and HS- across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl-/HS- exchange. American Journal of Physiology. Cell Physiology, 305(9), C941-C950. doi:10.1152/ajpcell.00178.2013
CrossrefPubMedPMCGoogle Scholar

Jennings, M. L. (2021). Cell physiology and molecular mechanism of anion transport by erythrocyte band 3/AE1. American Journal of Physiology. Cell Physiology, 321(6), C1028-C1059. doi:10.1152/ajpcell.00275.2021
CrossrefPubMedPMCGoogle Scholar

Jin, X., Zhang, Y., Wang, D., Zhang, X., Li, Y., Wang, D., Liang, Y., Wang, J., Zheng, L., Song, H., Zhu, X., Liang, J., Ma, J., Gao, J., Tong, J., & Shi, L. (2024). Metabolite and protein shifts in mature erythrocyte under hypoxia. iScience, 27(4), 109315. doi:10.1016/j.isci.2024.109315
CrossrefPubMedPMCGoogle Scholar

Lew, V. L. (2023). The circulatory dynamics of human red blood cell homeostasis: oxy-deoxy and PIEZO1-triggered changes. Biophysical Journal, 122(3), 484-495. doi:10.1016/j.bpj.2022.12.038
CrossrefPubMedPMCGoogle Scholar

Meng, F., & Alayash, A. I. (2017). Determination of extinction coefficients of human hemoglobin in various redox states. Analytical Biochemistry, 521, 11-19. doi:10.1016/j.ab.2017.01.002
CrossrefPubMedPMCGoogle Scholar

Michenkova, M., Taki, S., Blosser, M. C., Hwang, H. J., Kowatz, T., Moss, Fraser. J., Occhipinti, R., Qin, X., Sen, S., Shinn, E., Wang, D., Zeise, B. S., Zhao, P., Malmstadt, N., Vahedi-Faridi, A., Tajkhorshid, E., & Boron, W. F. (2021). Carbon dioxide transport across membranes. Interface Focus, 11(2), 20200090. doi:10.1098/rsfs.2020.0090
CrossrefPubMedPMCGoogle Scholar

Morabito, R., Romano, O., La Spada, G., & Marino, A. (2016). H2O2-induced oxidative stress affects SO4= transport in human erythrocytes. PloS One, 11(1), e0146485. doi:10.1371/journal.pone.0146485
CrossrefPubMedPMCGoogle Scholar

Morabito, R., Remigante, A., Spinelli, S., Vitale, G., Trichilo, V., Loddo, S., & Marino, A. (2020). High glucose concentrations affect band 3 protein in human erythrocytes. Antioxidants, 9(5), 365. doi:10.3390/antiox9050365
CrossrefPubMedPMCGoogle Scholar

Nikinmaa, M. (2003). Gas transport. In: I. Bernhardt, J. C. Ellory (Eds), Red cell membrane transport in health and disease (pp. 489-509). Berlin: Springer, Berlin, Heidelberg. doi:10.1007/978-3-662-05181-8_20
CrossrefGoogle Scholar

Nipot, E. (2012). Effect of butanol and hexanol on the anion transport in ram and hen red blood cells. Visnyk of the Lviv University. Series BIology, 58, 246-250. (In Ukrainian)
Google Scholar

Perrone, P., Spinelli, S., Mantegna, G., Notariale, R., Straface, E., Caruso, D., Falliti, G., Marino, A., Manna, C., Remigante, A., & Morabito, R. (2023). Mercury chloride affects band 3 protein-mediated anionic transport in red blood cells: role of oxidative stress and protective effect of olive oil polyphenols. Cells, 12(3), 424. doi:10.3390/cells12030424
CrossrefPubMedPMCGoogle Scholar

Ramazanov, V. V. (2011). Efficiency of combined cryopreservatives containing glycerol or 1,2-propanediol during freezing of erythrocytes. Problems of Cryobiology and Cryomedicine, 21(2), 125-136. Retrieved from https://journal.cryo.org.ua/index.php/probl-cryobiol-cryomed/article/view/138
Google Scholar

Ratanasopa, K., Strader, M. B., Alayash, A. I., & Bulow, L. (2015). Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Frontiers in Physiology, 6, 39. doi:10.3389/fphys.2015.00039
CrossrefPubMedPMCGoogle Scholar

Remigante, A., Spinelli, S., Trichilo, V., Loddo, S., Sarikas, A., Pusch, M., Dossena, S., Marino, A., & Morabito, R. (2022а). d-Galactose induced early aging in human erythrocytes: role of band 3 protein. Journal of Cellular Physiology, 237(2), 1586-1596. doi:10.1002/jcp.30632
CrossrefPubMedPMCGoogle Scholar

Remigante, A., Spinelli, S., Pusch, M., Sarikas, A., Morabito, R., Marino, A., & Dossena, S. (2022b). Role of SLC4 and SLC26 solute carriers during oxidative stress. Acta Physiologica, 235(1), e13796. doi:10.1111/apha.13796
CrossrefPubMedPMCGoogle Scholar

Sae-Lee, W., McCafferty, C. L., Verbeke, E. J., Havugimana, P. C., Papoulas, O., McWhite, C. D., Houser, J. R., Vanuytsel, K., Murphy, G. J., Drew, K., Emili, A., Taylor, D. W., & Marcotte, E. M. (2022). The protein organization of a red blood cell. Cell Reports, 40(3), 111103. doi:10.1016/j.celrep.2022.111103
CrossrefPubMedPMCGoogle Scholar

Su, C. C., Zhang, Z., Lyu, M., Cui, M., & Yu, E. W. (2024). Cryo-EM structures of the human band 3 transporter indicate a transport mechanism involving the coupled movement of chloride and bicarbonate ions. PLoS Biology, 22(8), e3002719. doi:10.1371/journal.pbio.3002719
CrossrefPubMedPMCGoogle Scholar

Tellone, E., Ficarra, S., Scatena, R., Giardina, B., Kotyk, A., Russo, A., Colucci, D., Bellocco, E., Laganà, G., & Galtieri, A. (2008). Influence of gemfibrozil on sulfate transport in human erythrocytes during the oxygenation-deoxygenation cycle. Physiological Research, 57(4), 621-629. doi:10.33549/physiolres.931251
CrossrefPubMedGoogle Scholar

Welbourn, E. M., Wilson, M. T., Yusof, A., Metodiev, M. V., & Cooper, C. E. (2017). The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radical Biology & Medicine, 103, 95-106. doi:10.1016/j.freeradbiomed.2016.12.024
CrossrefPubMedPMCGoogle Scholar

Yamaguchi, M., Steward, M. C., Smallbone, K., Sohma, Y., Yamamoto, A., Ko, S. B., Kondo, T., & Ishiguro, H. (2017). Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium. The Journal of Physiology, 595(6), 1947-1972. doi:10.1113/jp273306
CrossrefPubMedPMCGoogle Scholar

Yang, Q., Chen, D., Li, C., Liu, R., & Wang, X. (2024). Mechanism of hypoxia-induced damage to the mechanical property in human erythrocytes-band 3 phosphorylation and sulfhydryl oxidation of membrane proteins. Frontiers in Physiology, 15, 1399154. doi:10.3389/fphys.2024.1399154
CrossrefPubMedPMCGoogle Scholar

Zheng, S., Krump, N. A., McKenna, M. M., Li, Y. H., Hannemann, A., Garrett, L. J., Gibson, J. S., Bodine, D. M., & Low, P. S. (2019). Regulation of erythrocyte Na+/K+/2Cl cotransport by an oxygen-switched kinase cascade. The Journal of Biological Chemistry, 294(7), 2519-2528. doi:10.1074/jbc.ra118.006393
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Olga Dotsenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.