KINETIC MODELLING OF SULFATE ION TRANSPORT THROUGH BAND 3 PROTEIN OF ERYTHROCYTES
DOI: http://dx.doi.org/10.30970/sbi.1904.856
Abstract
Background. Assessment of the kinetic properties of ion transport involving band 3 protein (B3p, AE1) is a sensitive tool for monitoring functional changes in erythrocytes under the influence of external factors. The aim of the work was to study the rate of H+,SO42-/Cl exchange in erythrocytes under osmotic and metabolic stress. To achieve this goal, a mathematical model was developed that uses parameter identification methods based on the results of experimental studies.
Materials and Methods. Erythrocytes were incubated in a medium of Na-phosphate buffer (0.015 M, pH 7.4) containing 0.15 M NaCl without glucose. During 3 hours of incubation, the ability of cells to anion exchange, the amount of uptake of SO42-, the level of oxidation of sulfhydryl groups and the content of ligand forms of hemoglobin (Hb) in the membrane-bound fraction were tested. To assess anion exchange, a mathematical model was created that involves the search for kinetic parameters using search optimization methods.
Results. The results obtained indicate that under the influence of osmotic and metabolic stress and hypoxia, the work of the anion exchanger AE1 slows down, which is reflected in a decrease in the exchange rate constant HCO3/Cl, Vmax, H+,SO42-/Clexchange. The predicted decrease in the content of SO42--ions in cells is has been confirmed by experimental data. According to the modelling results, incubation of cells leads to activation of the Na+,K+,2Cl cotransporter and Na+/H+ exchanger, and inhibition of the flux through the K+,2Cl cotransporter. Assessment of the composition of membrane-bound hemoglobin indicates that the decrease in the speed of AE1 is due to the formation of the deoxyHb-B3p complex and oxidative processes in cells.
Conclusion. The results of mathematical modelling and experimental data indicate the existence of universal O2-dependent mechanisms of regulation of molecular processes in erythrocytes that are based on competition between deoxyHb and other proteins for binding sites with band 3 protein.
Keywords
Full Text:
PDFReferences
| Al-Samir, S., Papadopoulos, S., Scheibe, R. J., Meißner, J. D., Cartron, J., Sly, W. S., Alper, S. L., Gros, G., & Endeward, V. (2013). Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1. The Journal of Physiology, 591(20), 4963-4982. doi:10.1113/jphysiol.2013.251181 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Attia, A. M. M., Ibrahim, F. A. A, Abd El-Latif, N. A., Aziz, S. W., & Moussa, S. A. A. (2015). Biophysical study on conformational stability against autoxidation of oxyhemoglobin and erythrocytes oxidative status in humans and rats. Wulfenia Journal, 22(12), 264-281. Google Scholar | ||||
| ||||
| Barshtein, G., Livshits, L., Gural, A., Arbell, D., Barkan, R., Pajic-Lijakovic, I., & Yedgar, S. (2024). Hemoglobin binding to the red blood cell (RBC) membrane is associated with decreased cell deformability. International Journal of Molecular Sciences, 25(11), 5814. doi:10.3390/ijms25115814 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Bidani, A., Crandall, E. D., & Forster, R. E. (1978). Analysis of postcapillary pH changes in blood in vivo after gas exchange. Journal of Applied Physiology, 44(5), 770-781. doi:10.1152/jappl.1978.44.5.770 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Bertocchio, J. P., Genetet, S., Da Costa, L., Walsh, S. B., Knebelmann, B., Galimand, J., Bessenay, L., Guitton, C., De Lafaille, R., Vargas-Poussou, R., Eladari, D., & Mouro-Chanteloup, I. (2020). Red blood cell AE1/band 3 transports in dominant distal renal tubular acidosis patients. Kidney International Reports, 5(3), 348-357. doi:10.1016/j.ekir.2019.12.020 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Bruce, L. J., Beckmann, R., Ribeiro, M. L., Peters, L. L., Chasis, J. A., Delaunay, J., Mohandas, N., Anstee, D. J., & Tanner, M. J. (2003). A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane. Blood, 101(10), 4180-4188. doi:10.1182/blood-2002-09-2824 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Cilek, N., Ugurel, E., Goksel, E., & Yalcin, O. (2023). Signaling mechanisms in red blood cells: a view through the protein phosphorylation and deformability. Journal of Cellular Physiology, 239(3), e30958. doi:10.1002/jcp.30958 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Dotsenko, О. І., & Taradina, G. V. (2024). Ion homeostasis in the regulation of intracellular pH and volume of human erythrocytes. Biophysical Bulletin, 51, 7-25. doi:10.26565/2075-3810-2024-51-01 Crossref ● Google Scholar | ||||
| ||||
| Ferru, E., Giger, K., Pantaleo, A., Campanella, E., Grey, J., Ritchie, K., Vono, R., Turrini, F., & Low, P. S. (2011). Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood, 117(22), 5998-6006. doi:10.1182/blood-2010-11-317024 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Galtieri, A., Tellone, E., Romano, L., Misiti, F., Bellocco, E., Ficarra, S., Russo, A., Di Rosa, D., Castagnola, M., Giardina, B., & Messana, I. (2002). Band-3 protein function in human erythrocytes: effect of oxygenation-deoxygenation. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1564(1), 214-218. doi:10.1016/s0005-2736(02)00454-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Geers, C., & Gros, G. (2000). Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiological Reviews, 80(2), 681-715. doi:10.1152/physrev.2000.80.2.681 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Gimsa, J. (1995). Red cell echinocytogenesis is correlated to the recruitment of external band-3 conformations. Bioelectrochemistry and Bioenergetics, 38(1), 99-103. doi:10.1016/0302-4598(95)01794-f Crossref ● Google Scholar | ||||
| ||||
| Jennings, M. L. (2005). Evidence for a second binding/transport site for chloride in erythrocyte anion transporter AE1 modified at glutamate 681. Biophysical Journal, 88(4), 2681-2691. doi:10.1529/biophysj.104.056812 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Jennings, M. L. (2013). Transport of H2S and HS- across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl-/HS- exchange. American Journal of Physiology. Cell Physiology, 305(9), C941-C950. doi:10.1152/ajpcell.00178.2013 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Jennings, M. L. (2021). Cell physiology and molecular mechanism of anion transport by erythrocyte band 3/AE1. American Journal of Physiology. Cell Physiology, 321(6), C1028-C1059. doi:10.1152/ajpcell.00275.2021 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Jin, X., Zhang, Y., Wang, D., Zhang, X., Li, Y., Wang, D., Liang, Y., Wang, J., Zheng, L., Song, H., Zhu, X., Liang, J., Ma, J., Gao, J., Tong, J., & Shi, L. (2024). Metabolite and protein shifts in mature erythrocyte under hypoxia. iScience, 27(4), 109315. doi:10.1016/j.isci.2024.109315 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Lew, V. L. (2023). The circulatory dynamics of human red blood cell homeostasis: oxy-deoxy and PIEZO1-triggered changes. Biophysical Journal, 122(3), 484-495. doi:10.1016/j.bpj.2022.12.038 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Meng, F., & Alayash, A. I. (2017). Determination of extinction coefficients of human hemoglobin in various redox states. Analytical Biochemistry, 521, 11-19. doi:10.1016/j.ab.2017.01.002 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Michenkova, M., Taki, S., Blosser, M. C., Hwang, H. J., Kowatz, T., Moss, Fraser. J., Occhipinti, R., Qin, X., Sen, S., Shinn, E., Wang, D., Zeise, B. S., Zhao, P., Malmstadt, N., Vahedi-Faridi, A., Tajkhorshid, E., & Boron, W. F. (2021). Carbon dioxide transport across membranes. Interface Focus, 11(2), 20200090. doi:10.1098/rsfs.2020.0090 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Morabito, R., Romano, O., La Spada, G., & Marino, A. (2016). H2O2-induced oxidative stress affects SO4= transport in human erythrocytes. PloS One, 11(1), e0146485. doi:10.1371/journal.pone.0146485 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Morabito, R., Remigante, A., Spinelli, S., Vitale, G., Trichilo, V., Loddo, S., & Marino, A. (2020). High glucose concentrations affect band 3 protein in human erythrocytes. Antioxidants, 9(5), 365. doi:10.3390/antiox9050365 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Nikinmaa, M. (2003). Gas transport. In: I. Bernhardt, J. C. Ellory (Eds), Red cell membrane transport in health and disease (pp. 489-509). Berlin: Springer, Berlin, Heidelberg. doi:10.1007/978-3-662-05181-8_20 Crossref ● Google Scholar | ||||
| ||||
| Nipot, E. (2012). Effect of butanol and hexanol on the anion transport in ram and hen red blood cells. Visnyk of the Lviv University. Series BIology, 58, 246-250. (In Ukrainian) Google Scholar | ||||
| ||||
| Perrone, P., Spinelli, S., Mantegna, G., Notariale, R., Straface, E., Caruso, D., Falliti, G., Marino, A., Manna, C., Remigante, A., & Morabito, R. (2023). Mercury chloride affects band 3 protein-mediated anionic transport in red blood cells: role of oxidative stress and protective effect of olive oil polyphenols. Cells, 12(3), 424. doi:10.3390/cells12030424 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Ramazanov, V. V. (2011). Efficiency of combined cryopreservatives containing glycerol or 1,2-propanediol during freezing of erythrocytes. Problems of Cryobiology and Cryomedicine, 21(2), 125-136. Retrieved from https://journal.cryo.org.ua/index.php/probl-cryobiol-cryomed/article/view/138 Google Scholar | ||||
| ||||
| Ratanasopa, K., Strader, M. B., Alayash, A. I., & Bulow, L. (2015). Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Frontiers in Physiology, 6, 39. doi:10.3389/fphys.2015.00039 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Remigante, A., Spinelli, S., Trichilo, V., Loddo, S., Sarikas, A., Pusch, M., Dossena, S., Marino, A., & Morabito, R. (2022а). d-Galactose induced early aging in human erythrocytes: role of band 3 protein. Journal of Cellular Physiology, 237(2), 1586-1596. doi:10.1002/jcp.30632 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Remigante, A., Spinelli, S., Pusch, M., Sarikas, A., Morabito, R., Marino, A., & Dossena, S. (2022b). Role of SLC4 and SLC26 solute carriers during oxidative stress. Acta Physiologica, 235(1), e13796. doi:10.1111/apha.13796 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Sae-Lee, W., McCafferty, C. L., Verbeke, E. J., Havugimana, P. C., Papoulas, O., McWhite, C. D., Houser, J. R., Vanuytsel, K., Murphy, G. J., Drew, K., Emili, A., Taylor, D. W., & Marcotte, E. M. (2022). The protein organization of a red blood cell. Cell Reports, 40(3), 111103. doi:10.1016/j.celrep.2022.111103 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Su, C. C., Zhang, Z., Lyu, M., Cui, M., & Yu, E. W. (2024). Cryo-EM structures of the human band 3 transporter indicate a transport mechanism involving the coupled movement of chloride and bicarbonate ions. PLoS Biology, 22(8), e3002719. doi:10.1371/journal.pbio.3002719 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Tellone, E., Ficarra, S., Scatena, R., Giardina, B., Kotyk, A., Russo, A., Colucci, D., Bellocco, E., Laganà, G., & Galtieri, A. (2008). Influence of gemfibrozil on sulfate transport in human erythrocytes during the oxygenation-deoxygenation cycle. Physiological Research, 57(4), 621-629. doi:10.33549/physiolres.931251 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Welbourn, E. M., Wilson, M. T., Yusof, A., Metodiev, M. V., & Cooper, C. E. (2017). The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radical Biology & Medicine, 103, 95-106. doi:10.1016/j.freeradbiomed.2016.12.024 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Yamaguchi, M., Steward, M. C., Smallbone, K., Sohma, Y., Yamamoto, A., Ko, S. B., Kondo, T., & Ishiguro, H. (2017). Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium. The Journal of Physiology, 595(6), 1947-1972. doi:10.1113/jp273306 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Yang, Q., Chen, D., Li, C., Liu, R., & Wang, X. (2024). Mechanism of hypoxia-induced damage to the mechanical property in human erythrocytes-band 3 phosphorylation and sulfhydryl oxidation of membrane proteins. Frontiers in Physiology, 15, 1399154. doi:10.3389/fphys.2024.1399154 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Zheng, S., Krump, N. A., McKenna, M. M., Li, Y. H., Hannemann, A., Garrett, L. J., Gibson, J. S., Bodine, D. M., & Low, P. S. (2019). Regulation of erythrocyte Na+/K+/2Cl– cotransport by an oxygen-switched kinase cascade. The Journal of Biological Chemistry, 294(7), 2519-2528. doi:10.1074/jbc.ra118.006393 Crossref ● PubMed ● PMC ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Olga Dotsenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
