ADAPTABILITY OF SOYBEAN UNDER COMPLEX TREATMENT WITH BIOPREPARATIONS OF DIFFERENT NATURE IN CONDITIONS OF ORGANIC FARMING AND HYDROTHERMAL STRESS
DOI: http://dx.doi.org/10.30970/sbi.1904.852
Abstract
Background. In organic farming conditions and increasing hydrothermal stress, the use of biological preparations as effective tools for improving the adaptability of soybeans is becoming particularly relevant. The integrated application of arbuscular mycorrhizal fungi, nitrogen-fixing bacteria, and phytohormonal regulators allows activating the plant physiological and biochemical processes. This biotechnological approach provides mitigation of the negative impact of hydrothermal stresses and maintains crop productivity even under unfavorable growing conditions.
Materials and Methods. The object of the study is the total chlorophyll content, leaf surface area, proline, and malondialdehyde (MDA) concentration, as well as the productivity of soybeans Khorol variety under unstable moisture conditions and influenced by rhizosphere microorganisms and various phytohormones in the composition of the biopreparations. Field, laboratory (physiological, biochemical), and statistical methods were used.
Results. The use of biopreparations improved biochemical, physiological, and morphological properties, as well as soybean productivity, indicating an improved plant status. The highest levels of total Chl (a+b) content were recorded in 2023 under the combined application of Mycofriend, Profix, and Violar, showing an average increase of 42.3 % and 26.7 % compared to the control, respectively. The leaf area reached 29.24 thousand m²/ha, while the yield amounted to 3.23 t/ha, exceeding the control by 28.9 % and 47.5 %, respectively. The elevated proline content (7.27 mg/g) and a lower MDA level (7.14 mg/g) during stress reflect reduced oxidative damage and better osmoregulation due to the synergistic action of mycorrhiza, rhizobia, and phytohormones.
Conclusion. The complex application of biopreparations (Mycofriend + Profix + Violar) in the organic cultivation system of the soybean Khorol variety promotes the activation of physiological and biochemical processes, increasing productivity and plant stress resistance under hydrothermal stress conditions.
Keywords
Full Text:
PDFReferences
| Ahmad, H. M., Fiaz, S., Hafeez, S., Zahra, S., Shah, A. N., Gul, B., Aziz, O., Mahmood-Ur-Rahman, Fakhar, A., Rafique, M., Chen, Y., Yang, S. H., & Wang, X. (2022). Plant growth-promoting rhizobacteria eliminate the effect of drought stress in plants: a review. Frontiers in Plant Science, 13, 875774. doi:10.3389/fpls.2022.875774 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Basiru, S., Mwanza, H. P., & Hijri, M. (2020). Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms, 9(1), 81. doi:10.3390/microorganisms9010081 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Begum, N., Xiao, Y., Wang, L., Li, D., Irshad, A., & Zhao, T. (2023). Arbuscular mycorrhizal fungus Rhizophagus irregularis alleviates drought stress in soybean with overexpressing the GmSPL9d gene by promoting photosynthetic apparatus and regulating the antioxidant system. Microbiological Research, 273, 127398. doi:10.1016/j.micres.2023.127398 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Bogati, K., & Walczak, M. (2022). The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy, 12(1), 189. doi:10.3390/agronomy12010189 Crossref ● Google Scholar | ||||
| ||||
| Bouremani, N., Cherif-Silini, H., Silini, A., Bouket, A.C., Luptakova, L., Alenezi, F. N., Baranov, O. Yu., & Lassaad, B. (2023). Plant growth-promoting rhizobacteria (PGPR): a rampart against the adverse effects of drought stress. Water, 15(3), 418. doi:10.3390/w15030418 Crossref ● Google Scholar | ||||
| ||||
| Chaika, T. O., Liashenko, V. V., & Khomenko, B. S. (2023). Vplyv inokuliatsii nasinnia na vrozhainist soi za orhanichnoi tekhnolohii vyroshchuvannia [The impact of seed inoculation on soybean yield under organic cultivation technology]. Taurida Scientific Herald. Series: Rural Sciences, 133, 180-187. doi:10.32782/2226-0099.2023.133.24 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
| Didora, V., & Kluchevych, M. (2021). Soybean productivity depending on the elements of organic cultivation technology in the short-term crop rotation of Ukrainian Polissia. Scientific Horizons, 24(2), 77-83. doi:10.48077/scihor.24(2).2021.77-83 Crossref ● Google Scholar | ||||
| ||||
| Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7), 1400033. doi:10.3732/apps.1400033 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Fatema, M. K., Mamun, M. A. A., Sarker, U., Hossain, M. S., Mia, M. A. B., Roychowdhury, R., Ercisli, S., Marc, R. A., Babalola, O. O., & Karim, M. A. (2023). Assessing morpho-physiological and biochemical markers of soybean for drought tolerance potential. Sustainability, 15(2), 1427. doi:10.3390/su15021427 Crossref ● Google Scholar | ||||
| ||||
| Ferreira, L. L., Júnior, N. R. V., Neto, J. C. de M., Carvalho, I. R., Fernandes, M. de S., Carnevale, A. B., Santos, N. S. C. dos, Curvêlo, C. R. da S., & Pereira, A. I. de A. (2020). Productive increase in soybeans from hormone treatment, inoculation and co-inoculation. Journal of Experimental Agriculture International, 42(4), 33-43. doi:10.9734/jeai/2020/v42i430497 Crossref | ||||
| ||||
| Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Gouli, S., Majeed, A., Liu, J., Moseley, D., Mukhtar, M. S., & Ham, J. H. (2024). Microbiome structures and beneficial bacteria in soybean roots under field conditions of prolonged high temperatures and drought stress. Microorganisms, 12(12), 2630. doi:10.3390/microorganisms12122630 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. doi:10.3390/antiox9080681 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Inbaraj, M. P. (2021). Plant-microbe interactions in alleviating abiotic stress - a mini review. Frontiers in Agronomy, 3, 667903. doi:10.3389/fagro.2021.667903 Crossref ● Google Scholar | ||||
| ||||
| Li, J., Meng, B., Chai, H., Yang, X., Song, W., Li, S., Lu, A., Zhang, T., & Sun, W. (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 499. doi:10.3389/fpls.2019.00499 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Liao, Z., Chen, B., Boubakri, H., Farooq, M., Mur, L. A. J., Urano, D., Teo, C. H., Tan, B. C., Hasan, M. M., Aslam, M. M., Tahir, M. Y., & Fan, J. (2025). The regulatory role of phytohormones in plant drought tolerance. Planta, 261, e98. doi:10.1007/s00425-025-04671-8 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Miljaković, D., Marinković, J., Tamindžić, G., Đorđević, V., Tintor, B., Milošević, D., Ignjatov, M., & Nikolić, Z. (2022). Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: strategy to improve seed germination and the initial seedling growth. Plants, 11(15), 1927. doi:10.3390/plants11151927 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Mirshad, P. P., & Puthur, J. T. (2016). Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz). Environmental Monitoring and Assessment, 188(7), 425. doi:10.1007/s10661-016-5428-7 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Mona, S. A., Hashem, A., Abd-Allah, E. F., Alqarawi, A.A., Soliman, D. W. K., Wirth, S., & Egamberdieva, D. (2017). Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture, 16(8), 1751-1757. doi:10.1016/s2095-3119(17)61695-2 Crossref ● Google Scholar | ||||
| ||||
| Poudel, S., Vennam, R. R., Shrestha, A., Reddy, K. R., Wijewardane, N. K., Reddy, K. N., & Bheemanahalli, R. (2023). Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Scientific Reports, 13(1), 1277. doi:10.1038/s41598-023-28354-0 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Sanders, J., Brinkmann, J., Chmelikova, L., Ebertseder, F., Freibauer, A., Gottwald, F., Haub, A., Hauschild, M., Hoppe, J., Hülsbergen, K.-J., Jung, R., Kusche, D., Levin, K., March, S., Schmidtke, K., Stein-Bachinger, K., Treu, H., Weckenbrock, P., Wiesinger, K., Gattinger, A., & Heß, J. (2025). Benefits of organic agriculture for environment and animal welfare in temperate climates. Organic Agriculture, 15(2), 213-231. doi:10.1007/s13165-025-00493-w Crossref ● Google Scholar | ||||
| ||||
| Shaukat, S., Mustafa, G., & Cheng, K. (2024). Phytohormones for combating global challenges: an ecofriendly approach. In: M. Faizan, & S. Hayat (Eds.), Plant growth regulators: resilience for sustainable agriculture (pp. 267-284). Singapore: Springer. doi:10.1007/978-981-97-2918-0 Crossref ● Google Scholar | ||||
| ||||
| Sheteiwy, M. S., Ali, D. F. I., Xiong, Y.-C., Brestic, M., Skalicky, M., Hamoud, Y. A., Ulhassan, Z., Shaghaleh, H., AbdElgawad, H., Farooq, M., Sharma, A., & El-Sawah, A. M. (2021). Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biology, 21(1), 195. doi:10.1186/s12870-021-02949-z Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Sun, W., & Shahrajabian, M. H. (2023). The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants, 12(17), 3101. doi:10.3390/plants12173101 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Umashankar, N., Raveendra, H. R., Benherlal, P. S., & Bhagyashree, K. B. (2023). Synergistic effects of arbuscular mycorrhizal fungi and PGPR on yield improvements in millets. In: R. N. Pudake, M. Kumari, D. R. Sapkal, & A. K. Sharma (Eds.), Millet rhizosphere (pp. 225-238). Singapore: Springer. doi:10.1007/978-981-99-2166-9 Crossref ● Google Scholar | ||||
| ||||
| Wellburn, A. R. (1994). The spectral determination of chlorophylls a, and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. doi:10.1016/s0176-1617(11)81192-2 Crossref ● Google Scholar | ||||
| ||||
| Wu, H. H., Zou, Y. N., Rahman, M. M., Ni, D., & Wu, Q. S. (2017). Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Scientific Reports, 7(1), 42389. doi:10.1038/srep42389 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), 50. doi:10.3390/horticulturae7030050 Crossref ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Tetiana Chaika, Iryna Korotkova, Ganna Pospielova, Ninel Kovalenko, Victor Liashenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
