EFFECTS OF INOCULATION AND PHOSPHORUS NUTRITION ON YIELD AND SEED QUALITY OF SOYBEAN VARIETIES IN THE CENTRAL FOREST-STEPPE ZONE

Yaroslav Chabaniuk, Iryna Brovko, Andrii Kovtun, Myroslava Milova


DOI: http://dx.doi.org/10.30970/sbi.1903.836

Abstract


Background. The relationship between the seed yield of soybean (Glycine max (L.) Merrill) and nitrogen (N) has been well studied, whereas the effect of other elements, particularly phosphorus (P), remains insufficiently explored. Phosphorus, the second most important element after nitrogen, is crucial for obtaining high-quality soybean yields. At the same time, despite numerous studies on the effects of phosphate-mobilizing and nitrogen-fixing microorganisms on sustainable agricultural development, the effectiveness of these scientific efforts is insignificant.
Materials and Methods. General scientific and specialized methods were used, inclu­ding field, laboratory, chemical and statistical methods. The research was conduc­ted in the Forest-Steppe Zone from 2019 to 2021 at the experimental field of the LLC “Institute of Agrobiology” (Velykyi Mytnyk village, Khmilnyk district, Vinnytsia region). In this experiment, three foreign-bred soybean varieties were used: Mentor (early-matu­ring), Cordoba, and Moravia (mid-early varieties), using mineral phosphorus fertilization (P30) and biofertilization based on a ternary composition of phosphate-mobilizing strains – Bacillus megaterium de Bary, 1884 (eko/207), B. amyloliquefaciens (ex Fukomoto, 1943) Priest, Goodfellow, Shute & Berkeley, 1987 (eko/205), and Trichoderma harzianum Rifai, 1969 (eko/101). These treatments were applied both without inoculation and with seed inoculation with three strains of Bradyrhizobium japonicum (Kirchner, 1896) Jordan, 1982 from the LLC “Institute of Agrobiology” (active ingredients of the applied formulations).
Results and Discussion. All studied soybean varieties responded positively to the application of phosphorus fertilization and biofertilization based on phosphate-mobilizing strains, both without inoculation and with seed inoculation using nitrogen-fixing bacterial strains. Overall, the grain yield increase (%) in the experimental variants ranged from +7.70 % to +18.28 %. The best yield performance (compared to the control) was recorded in the variant combining inoculation with bacterial-micromycete (BM) biofertilization, resulting in a grain yield increase of +0.31 t/ha or 11.27 % (Mentor), +0.31 t/ha or 13.58 % (Cordoba), and +0.48 t/ha or 18.28 % (Moravia). The protein content (%) in soybean seeds ranged from 38.75 % to 42.75 %, depending on the variety, treatment variant, and fertilization background. The mid-early Moravia variety was the only one that showed an increase in protein percentage across all experimental variants (P30 and BM), both without inoculation and with seed inoculation. In contrast, the Mentor and Cordoba varieties exhibited a quantitative reduction in protein content in the P30 and BM variants (compared to the control) only in the absence of seed inoculation.
Conclusion. In the Central Forest-Steppe Zone of Ukraine, the combination of seed inoculation with phosphorus fertilization and biofertilizers based on phosphate-mobilizing microorganisms significantly improved soybean yield and seed protein content. In the overall variance, the factorial share of influence (%) on yield was lower than on protein content, amounting to 34 % and 67 %, respectively. The greatest impact on protein content was from inoculation (29 %), while yield was most affected by inoculation (17 %) and phosphorus supply (14 %). Variety-related factors were less influential for yield but contributed 17 % to protein variation. Factor interactions were mostly insignificant for yield but notable for protein.


Keywords


cultivated soybean, Glycine max (L.) Merrill, phosphorus nutrition, phosphate-mobilizing microorganisms, yield, protein content

Full Text:

PDF

References


Adjei-Nsiah, S., Martei, D., Yakubu, A., & Ulzen, J. (2022). Soybean (Glycine max L. Merrill) responds to phosphorus application and rhizobium inoculation on Acrisols of the semi-deciduous forest agro-ecological zone of Ghana. PeerJ, 10, e12671. doi:10.7717/peerj.12671
CrossrefPubMedPMCGoogle Scholar

Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. doi:10.3389/fmicb.2017.00971
CrossrefPubMedPMCGoogle Scholar

Aneja, K. R. (2003). Experiments in microbiology, plant pathology and biotechnology. New Delhi: New Age International Limited Publishers.
Google Scholar

Baida, M. (2021). Soybean productivity formation under the effect of microfertilisers and growth regulators. Norwegian Journal of Development of the International Science, 74(2), 7-11. (In Ukrainian)
Google Scholar

Cappuccino, J. G., & Sherman, N. J. M. (2014). Microbiology: a laboratory manual. London: Pearson Education Limited.
Google Scholar

Chabaniuk, Ya. V., Brovko, I. S., Podhurska, I. O., Hrynevuch, I. O., & Nikiforenko, V. M. (2019). Influence of biological products Bionorma Nitrogen and Bionorma Phosphorus on the productivity of wheat solid spring. Scientific Reports of the National University of Sciences of Ukraine, 6(82), 1-9. doi:10.31548/dopovidi2019.06.004 (In Ukrainian)
CrossrefGoogle Scholar

Cheng, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., & Ma, Y. (2023). Phosphate-solubilizing bacteria: their agroecological function and optimistic application for enhancing agro-productivity. Science of The Total Environment, 901, 166468. doi:10.1016/j.scitotenv.2023.166468
CrossrefPubMedGoogle Scholar

Didora, V. H., Derebon, I. Yu., & Savrasykh, L. D. (2017). Tekhnolohichni pokaznyky yakosti soi zalezhno vid inokuliatsii ta udobrennia v umovakh Ukrainskoho Polissia [Technological indicators of soybean quality depending on inoculation and fertilization in the conditions of Ukrainian Polissya]. Vìsnik Žitomirs'kogo nacìonal'nogo agroekologìčnogo unìversitetu, 1(1), 57-63. (In Ukrainian)
Google Scholar

Didora, V. H., Smahlii, O. F., Ermantraut, E. R., Hudz, V. P., Moiseienko, V. V., Manko, Yu. P., Trofymenko, P. I., Saiuk, O. A., Derebon, I. Yu., & Khrapiichuk, P. P. (2013). Metodyka naukovykh doslidzhen v ahronomii [Scientific research methodology in agronomy]. Kyiv: Center for Educational Literature. Retrieved from http://ir.polissiauniver.edu.ua/bitstream/123456789/3892/1/MNDA_2013_73-86.pdf (In Ukrainian)
Google Scholar

Fedoryk, I. V. (2019). Impact of seed inoculation on soy crop. Taurian Scientific Herald, 108, 110-116. doi:10.32851/2226-0099.2019.108.15 (In Ukrainian)
CrossrefGoogle Scholar

Fedoruk, I. V., Kolodiy, V. A., & Khmelianchyshyn, Yu. V. (2022). Influence of nutrients on productivity of soybeans. Taurian Scientific Herald, 128, 221-227. doi:10.32851/2226-0099.2022.128.30 (In Ukrainian)
CrossrefGoogle Scholar

Hadzovskyi, H. L., & Novytska, N. V. (2018). Yield formation of soybean under the influence of inoculation and top-dressing. Myronivka Bulletin, 7(0), 113-122. doi:10.31073/mvis201807-11 (In Ukrainian)
Crossref

Hadzovskyi, H. L., Novytska, N. V., & Martynov, O. M. (2020). Yield and quality of soybeans grain under influence of inoculation and foliar top dressing. Taurian Scientific Herald, 111, 44-48. doi:10.32851/2226-0099.2020.111.5
CrossrefGoogle Scholar

Hamza, M., Basit, A. W., Shehzadi, I., Tufail, U., Hassan, A., Hussain, T., Siddique, M. U., & Hayat, H. M. (2024). Global impact of soybean production: a review. Asian Journal of Biochemistry, Genetics and Molecular Biology, 16(2), 12-20. doi:10.9734/ajbgmb/2024/v16i2357
CrossrefGoogle Scholar

Hubenko, L. V., Holodna, A. V., & Remez, H. H. (2019). The influence of mineral fertilizers and bacterial preparations on yield and quality of soya seeds. Scientific and Technical Bulletin of the Institute of Oilseed Crops NAAS, 27, 89. doi:10.36710/ioc-2019-27-10 (In Ukrainian)
CrossrefGoogle Scholar

Hungria, M., Franchini, J. C., Campo, R. J., & Graham, P. H. (2005). The importance of nitrogen fixation to soybean cropping in South America. In: D. Werner & W. E. Newton (Eds.), Nitrogen fixation in agriculture, forestry, ecology, and the environment (pp. 25-42). Dordrecht: Springer Netherlands. doi:10.1007/1-4020-3544-6_3
CrossrefGoogle Scholar

Houngnandan, H. B., Adandonon, A., Akplo, T. M., Zoundji, C. C., Kouelo, A. F., Zeze, A., Houngnandan, P., Bodjrenou, R., Dehoue, H., & Akinocho, J. (2020). Effect of rhizobial inoculation combined with phosphorus fertilizer on nitrogen accumulation, growth and yieldof soybean in Benin. Journal of Soil Science and Environmental Management, 11(4), 153-163.
Google Scholar

Information and reference system "Sort". (n. d.). Retrieved from http://sort.sops.gov.ua/search/search

Kabiru, M. R., Buernor, A. B., Dahhani, S., Hafidi, M., Jibrin, J. M., & Jemo, M. (2024). Soybean yield variability and predictability from applied phosphorus sources and rhizobia inoculation in Northern Nigeria. Frontiers in Sustainable Food Systems, 8, 1428466. doi:10.3389/fsufs.2024.1428466
CrossrefGoogle Scholar

Korobko, A. (2021). Dynamics of soybean production in Ukraine and the world. Balanced Nature Using, 4, 125-134. doi:10.33730/2310-4678.4.2021.253098 (In Ukrainian)
CrossrefGoogle Scholar

Ministry of Economic Development, Trade and Agriculture. (2021). Derzhavnyi reiestr sortiv roslyn, prydatnykh dlia poshyrennia v Ukraini na 2021 rik [State register of plant varieties suitable for dissemination in Ukraine in 2021]. Kyiv. Retrieved from https://farmer.dp.ua/wp-content/uploads/Reyestr-sortiv-roslyn-Ukrayiny-stanom-na-16.07.2021.pdf (In Ukrainian)

Mirriam, A., Mugwe, J., Nasar, J., Kisaka, O., Ranjan, S., & Gitari, H. (2023). Role of phosphorus and inoculation with Bradyrhizobium in enhancing soybean production. Advances in Agriculture, 2023, 1-14. doi:10.1155/2023/3231623
CrossrefGoogle Scholar

Petrychenko, V. F. (2012). Scientific foundations of soybean production and use in livestock breeding. Feeds and Feed Production, 71, 3-11. (In Ukrainian)
Google Scholar

Raymond, N. S., Gómez-Muñoz, B., van der Bom, F. J. T., Nybroe, O., Jensen, L. S., Müller-Stöver, D. S., Oberson, A., & Richardson, A. E. (2020). Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment. New Phytologist, 229(3), 1268-1277. doi:10.1111/nph.16924
CrossrefPubMedGoogle Scholar

Salvagiotti, F., Magnano, L., Ortez, O., Enrico, J., Barraco, M., Barbagelata, P., Condori, A., Di Mauro, G., Manlla, A., Rotundo, J., Garcia, F. O., Ferrari, M., Gudelj, V., & Ciampitti, I. (2021). Estimating nitrogen, phosphorus, potassium, and sulfur uptake and requirement in soybean. European Journal of Agronomy, 127, 126289. doi:10.1016/j.eja.2021.126289
CrossrefGoogle Scholar

Satyaprakash, M., Nikitha, T., Reddi, E. U. B., Sadhana, B., & Vani, S. S. (2017). Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Sciences, 6(4), 2133-2144. doi:10.20546/ijcmas.2017.604.251
CrossrefGoogle Scholar

Sedibe, M. M., Mofokeng, A. M., & Masvodza, D. R. (2023). Soybean production, constraints, and future prospects in poorer countries: a review. In: M. Hasanuzzaman (Ed.), Production and utilization of legumes - progress and prospects (pp. 1-15). IntechOpen. doi:10.5772/intechopen.109516
CrossrefGoogle Scholar

Shepilova, T., Petrenko, D., Leshchenko, S., Vasylkovska, K., & Kovalev, M. (2023). Scientifically based optimization of agricultural techniques for growing soy. Scientific Progress & Innovations, 26(2), 56-59. doi:10.31210/spi2023.26.02.10 (In Ukrainian)
CrossrefGoogle Scholar

Singh, S. K., Pachauri, R. K., Khatoon, H., Katiyar, D., & Agnihotri, G. (2025). The role of biofertilizers in enhancing soil and productivity - a review. International Journal of Plant & Soil Science, 37(3), 141-161. doi:10.9734/ijpss/2025/v37i35355
CrossrefGoogle Scholar

State Consumer Standard of Ukraine. (2007). DSTU 4117:2007. Zerno ta produkty yoho pererobky. Vyznachennia pokaznykiv yakosti metodom infrachervonoi spektroskopii [DSTU 4117:2007. Grain and its processing products. Determination of quality indicators by infrared spectroscopy]. Kyiv. Retrieved from https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=85620 (In Ukrainian)

Stryzhak, A. M. (2018). Existing state and perspectives of development of soybean seeds production in Ukraine. Tavrian Scientific Bulletin, 99, 141-147. Retrieved from https://journals.indexcopernicus.com/api/file/viewByFileId/648666.pdf (In Ukrainian)
Google Scholar

Sydiakina, O., & Ivaniv, M. (2023). Productivity of soybean varieties of different maturity groups depending on plant density under drip irrigation in the South of Ukraine. Scientific Horizons, 26(11), 100-110. doi:10.48077/scihor11.2023.100
CrossrefGoogle Scholar

Tkachuk, O., Didur, I., & Pantsyreva, A. (2022). Ecological assessment of medium-rating and medium-late-rating soybean varieties. Agriculture and Forestry, 24, 5-15. doi:10.37128/2707-5826-2022-1-1 (In Ukrainian)
CrossrefGoogle Scholar

Tkachyk, S. O., Prysiazhniuk, O. I., & Leshchuk, N. V. (2017). Metodyka provedennia kvalifikatsiinoi ekspertyzy sortiv roslyn na prydatnist do poshyrennia v Ukraini [Methodology for conducting qualification examinations of plant varieties for suitability for distribution in Ukraine]. Vinnytsia: Private Entrepreneur Korzun D. Yu. Retrieved from https://sops.gov.ua/uploads/page/5b7e5c0ed8332.pdf (In Ukrainian)
Google Scholar

Verkhovna Rada of Ukraine (2010). Konventsiia pro okhoronu biolohichnoho riznomanittia vid 1992 roku [Convention on Biological Diversity of 1992]. Retrieved from https://zakon.rada.gov.ua/laws/show/995_030#Text (In Ukrainian)

Verkhovna Rada of Ukraine (1999). Konventsiia pro mizhnarodnu torhivliu vydamy dykoi fauny i flory, shcho perebuvaiut pid zahrozoiu znyknennia (червень 1979 р.) [Convention on International Trade in Endangered Species of Wild Fauna and Flora (June, 1979)]. Retrieved from https://zakon.rada.gov.ua/laws/show/995_129#Text (In Ukrainian)

Vincent, J. M. (1970). A manual for the practical study of root-nodule bacteria. Oxford: Blackwell Scientific Publications.
Google Scholar

Zabolotnyi, H. M., Mazur, V. A., Tsyhanska, O. I., Didur, I. M., Tsyhanskyi, V. I., & Pantsyreva H. V. (2020). Ahrobiolohichni osnovy vyroshchuvannia soi ta shliakhy maksymalnoi realizatsii yii produktyvnosti [Agrobiological foundations of soybean cultivation and ways to maximize its productivity]. Vinnytsia: Private Entrepreneur Korzun D. Yu. Retrieved from http://socrates.vsau.edu.ua/repository/getfile.php/27706.pdf (In Ukrainian)
Google Scholar

Zimmer, S., Messmer, M., Haase, T., Piepho, H.-P., Mindermann, A., Schulz, H., Habekuß, A., Ordon, F., Wilbois, K.-P., & Heß, J. (2016). Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. European Journal of Agronomy, 72, 38-46. doi:10.1016/j.eja.2015.09.008
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Yaroslav Chabaniuk, Iryna Brovko, Andrii Kovtun, Myroslava Milova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.