MORPHOLOGY AND PHYLOGENY OF NAKED AMOEBAE OF THE GENERA THECAMOEBA AND STENAMOEBA (THECAMOEBIDAE; AMOEBOZOA) FROM NATURAL BIOTOPES OF UKRAINE
DOI: http://dx.doi.org/10.30970/sbi.1903.846
Abstract
Background. The family Thecamoebidae includes the genera Thecamoeba, Sappinia, Stenamoeba, Stratorugosa, and Thecochaos, which are widely distributed in water bodies and terrestrial biotopes. Species identification of naked amoebae is impossible without a combination of morphological and genetic methods.
Material and Methods. Species were determined using modern light microscopy; genomic DNA was isolated using the guanidine isothiocyanate method, and phylogenetic analysis was performed using the MEGA 10.0 software application.
Results and Discussion. Based on morphological features and 18S rRNA gene sequences, we identified nine representatives of the genus Thecamoeba (Thecamoeba striata (OQ134483, OQ134482), Thecamoeba quadrilineata (ON398268, ON398269), Thecamoeba sphaeronucleolus, Thecamoeba verrucosa, Thecamoeba terricola, Thecamoeba similis (OL604178, OL604177), Thecamoeba orbis, Thecamoeba hilla, Thecamoeba sp. (MZ079371)) and two species of the genus Stenamoeba (Stenamoeba stenopodia (OP419588, OP375108), Stenamoeba sp.). Morphological characters are given for all species, taking into account molecular data. In the molecular cluster Discosea, Thecamoebidae is a monophyletic taxon that unites groups of amoebas from the genera Thecamoeba, Sappinia, Thecochaos, Stenamoeba. Usually, Thecamoeba and Sappinia together form a sister group to the genus Thecochaos.
Conclusions. Thecamoeba-like amoebae on the phylogenetic tree form three groups: striate (Thecamoeba striata (OQ134483, OQ134482, OR994897, OL423100) + Thecamoeba vumurta (OL423099)), rugose (Thecamoeba similis (OL604178, OL604177, PQ451966, AY294145) + Thecamoeba foliovenanda (MN544291, MN544293)), and striate (Thecamoeba astrologa (MW817155) + Thecamoeba cosmophorea (MH628647) + Thecamoeba quadrilineata (ON398269, ON398268) + Thecamoeba sp. (MZ079371)) and rugose (Thecamoeba aesculea (JN247436)) morphotypes. The group of amoebae of the genus Stenamoeba (Stenamoeba stenopodia (OP375108+OP419588), Stenamoeba sp. (PQ431550), Stenamoeba dejonckheerei (MT386405), Stenamoeba berchidia (KF547922), Stenamoeba polymorpha (KU955320)), which belong to the lingulate morphotype, have a basal position in the phylogenetic tree.
Keywords
Full Text:
PDFReferences
| Adl, S. M., Bass, D., Lane, C. E., Lukeš, J., Schoch, C. L., Smirnov, A., ... & Zhang, Q. (2019). Revisions to the classification, nomenclature, and diversity of eukaryotes. Journal of Eukaryotic Microbiology, 66(1), 4-119. doi:10.1111/jeu.12691 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Anderson, O. R. (2007). A seasonal study of the carbon content of planktonic naked amoebae in the Hudson Estuary and in a productive freshwater pond with comparative data for ciliates. Journal of Eukaryotic Microbiology, 54(4), 388-391. doi:10.1111/j.1550-7408.2007.00276.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Berrilli, F., Di Cave, D., Novelletto, A., & Montalbano Di Filippo, M. (2021). PCR-based identification of thermotolerant free-living amoebae in Italian hot springs. European Journal of Protistology, 80, 125812. doi:10.1016/j.ejop.2021.125812 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Bovee, E. C., & Jahn, T. L. (1966). Mechanisms of movement in taxonomy of Sarcodina. III. Orders, suborders, families, and subfamilies in the superorder Lobida. Systematic Zoology, 15(3), 229-240. doi:10.2307/2411395 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Borovičková, T., Mrva, M., & Garajová, M. (2019). Thecamoeba quadrilineata (Amoebozoa, Lobosa) as a new member of amphizoic amoebae - first isolation from endozoic conditions. Parasitology Research, 118(3), 1019-1023. doi:10.1007/s00436-019-06207-y Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Borquez-Román, M. A., Lares-Jiménez, L. F., Rodriguez-Anaya, L. Z., Gonzalez-Galaviz, J. R., Fuerst, P. A., Ibarra-Gámez, J. C., Casillas-Hernández, R., & Lares-Villa, F. (2020). Stenamoeba dejonckheerei sp. nov., a free-living amoeba isolated from a thermal spring. Pathogens, 9(7), 586. doi:10.3390/pathogens9070586 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Cavalier-Smith, T., Chao, E. E., & Lewis, R. (2016). 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Molecular Phylogenetics and Evolution, 99, 275-296. doi:10.1016/j.ympev.2016.03.023 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Carter, H. J. (1856). XIV. - Notes on the freshwater infusoria on the island of Bombay. No. 1. Organization. Annals and Magazine of Natural History, 18(104), 115-132. doi:10.1080/00222935608697599 Crossref ● Google Scholar | ||||
| ||||
| Cole, J., Anderson, O. R., Tekle, Y. I., Grant, J., Katz, L. A., & Nerad, T. (2010). A description of a new "Amoebozoan" isolated from the American lobster, Homarus americanus. Journal of Eukaryotic Microbiology, 57(1), 40-47. doi:10.1111/j.1550-7408.2009.00445.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Corsaro, D., Wylezich, C., Walochnik, J., Venditti, D., & Michel, R. (2017). Molecular identification of bacterial endosymbionts of Sappinia strains. Parasitology Research, 116(2), 549-558. doi:10.1007/s00436-016-5319-4 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Dyková, I., Kostka, M., & Pecková, H. (2010). Two new species of the genus Stenamoeba Smirnov, Nassonova, Chao et Cavalier-Smith, 2007. Acta Protozoologica, 49(3), 245-251. Google Scholar | ||||
| ||||
| Dyková, I., & Kostka, M. (2013). Illustrated guide to culture collection of free-living amoebae. Praha: Academia. Google Scholar | ||||
| ||||
| Fromentel, E. (1874). Etudes sur les microzoaires ou infusoires proprement dits. Paris: Masson. Google Scholar | ||||
| ||||
| Geisen, S., Weinert, J., Kudryavtsev, A., Glotova, A., Bonkowski, M., & Smirnov, A. (2014). Two new species of the genus Stenamoeba (Discosea, Longamoebia): cytoplasmic MTOC is present in one more amoebae lineage. European Journal of Protistology, 50(2), 153-165. doi:10.1016/j.ejop.2014.01.007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Geisen, S., Mitchell, E. A. D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L. D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F. W., Walochnik, J., & Lara, E. (2018). Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews, 42(3), 293-323. doi:10.1093/femsre/fuy006 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Greeff, R. (1866). Ueber einige in der Erde lebende Amöben und andere Rhizopoden. Archiv Für Mikroskopische Anatomie, 2(1), 299-331. doi:10.1007/bf02962036 Crossref ● Google Scholar | ||||
| ||||
| Greeff, R. (1891). Uber die organismus der Amöben. Biologia Centrali-Americana, 11, 633-640. Google Scholar | ||||
| ||||
| Koehsler, M., Walochnik, J., Michel, R., Lugauer, J., & Wylezich, C. (2007). Molecular identification and classification of Cochlonema euryblastum, a zoopagalean parasite of Thecamoeba quadrilineata. Mycologia, 99(2), 215-221. doi:10.1080/15572536.2007.11832580 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Lepşi, I. (1926). Fauna republicii populare Romine. Protozoa, Vol. 1, Rhizopoda, Fasc. 2, Euamoebidea. Romine, Bucuresti: Academia Republicii Populare. | ||||
| ||||
| Maniatis, T., Fritsch, E. F., & Sambrook, J. (1982). Molecular cloning, a laboratory manual. New York: Cold Spring Harbor Laboratory. Google Scholar | ||||
| ||||
| Medlin, L., Elwood, H. J., Stickel, S., & Sogin, M. L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 71(2), 491-499. doi:10.1016/0378-1119(88)90066-2 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Michel, R., & Wylezich, C. (2005). Beitrag zur Biologic und Morphologie von Cochlonema euryblastum, einem endoparasitischen Pilz von Thecamoeba quadrilineata. Mikrokosmos, 94(2), 75-79. Google Scholar | ||||
| ||||
| Michel, R., Walochnik, J., & Scheid, P. (2014). Article for the "Free-living amoebae Special Issue": isolation and characterisation of various amoebophagous fungi and evaluation of their prey spectrum. Experimental Parasitology, 145, S131-S136. doi:10.1016/j.exppara.2014.10.005 103 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Michel, R., Scheid, P., Koehsler, M., & Walochnik, J. (2015). Acaulopage tetraceros Drechsler 1935 (Zoopagales): cultivation, prey pattern and molecular characterization. Endocytobiosis and Cell Research, 26, 76-82. Google Scholar | ||||
| ||||
| Moran, S., Mooney, R., & Henriquez, F. L. (2022). Diagnostic considerations for non-Acanthamoeba amoebic keratitis and clinical outcomes. Pathogens, 11(2), 219. doi:10.3390/pathogens11020219 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
| Murase, J., & Frenzel, P. (2008). Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiology Ecology, 65(3), 408-414. doi:10.1111/j.1574-6941.2008.00511.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Page, F. C. (1971). A comparative study of five fresh-water and marine species of Thecamoebidae. Transactions of the American Microscopical Society, 90(2), 157-173. doi:10.2307/3225022 Crossref ● Google Scholar | ||||
| ||||
| Page, F. C. (1977). The genus Thecamoeba (Protozoa, Gymnamoebia) species distinctions, locomotive morphology, and protozoan prey. Journal of Natural History, 11(1), 25-63. doi:10.1080/00222937700770031 Crossref ● Google Scholar | ||||
| ||||
| Page, F. C. (1988). A new key to freshwater and soil Gymnamoebae: with instruction for culture. Ambleside: Freshwater Biological Asociation. Google Scholar | ||||
| ||||
| Page, F. C., & Siemensma, F. J. (1991). Nackte Rhizopoda und Heliozoea. Protozoenfauna Band 2. Stuttgart: Gustav Fischer. Google Scholar | ||||
| ||||
| Patsyuk, M. (2023). Phylogenetic relationships among naked amoebae found in natural biotopes. Cytology and Genetics, 57(6), 567-578. doi:10.3103/S0095452723060063 Crossref ● Google Scholar | ||||
| ||||
| Peglar, M. T., Nerad, T. A., & Anderson, O. R. (2016). Stenamoeba polymorpha, a new species isolated from domesticated horse Equus ferus caballus. Journal of Eukaryotic Microbiology, 63(6), 698-708. doi:10.1111/jeu.12317 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Penard, E. (1902). Faune rhizopodique du bassin du Léman. Genève: Henry Kündig. Google Scholar | ||||
| ||||
| Penard, E. (1905). Observations sur les amibes a pellicule. Archiv für Protistenkunde, 6, 175-206. Google Scholar | ||||
| ||||
| Risse-Buhl, U., Schlief, J., & Mutz, M. (2015). Phagotrophic protists are a key component of microbial communities processing leaf litter under contrasting oxic conditions. Freshwater Biology, 60(11), 2310-2322. doi:10.1111/fwb.12657 Crossref ● Google Scholar | ||||
| ||||
| Schaeffer, A. A. (1926). Taxonomy of the amebas, with descriptions of thirty-nine new marine and freshwater species. Transactions of the American Microscopical Society, 45(3), 260. doi:10.2307/3221693 Crossref ● Google Scholar | ||||
| ||||
| Stanley, S. L. (2003). Amoebiasis. Lancet, 361(9362), 1025-1034. doi:10.1016/s0140-6736(03)12830-9 Crossref ● PubMed ● Google Scholar | ||||
| ||||
| Tekle, Y. I., Anderson, O. R., Katz, L. A., Maurer-Alcalá, X. X., Romero, M. A. C., & Molestina, R. (2016). Phylogenomics of "Discosea": a new molecular phylogenetic perspective on Amoebozoa with flat body forms. Molecular Phylogenetics and Evolution, 99, 144-154. doi:10.1016/j.ympev.2016.03.029 Crossref ● PubMed ● Google Scholar | ||||
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Maryna Patsyuk

This work is licensed under a Creative Commons Attribution 4.0 International License.
