CYTOGENETIC STUDY OF THE UKRAINIAN RIVER BUFFALO (BUBALUS BUBALIS BUBALIS)

Valentyna Dzitsiuk, Tetyana Ryk, Tamara Lytvynenko


DOI: http://dx.doi.org/10.30970/sbi.1903.843

Abstract


Introduction. The article presents the results of the exploration of the karyotype of the Ukrainian population of river buffaloes (Bubalus bubalis bubalis), which are bred in Ukraine in the household of Sviato-Pokrovska Holosiivska Pustyn monastery.
Materials and Methods. Chromosome preparations were obtained from cultured peripheral blood lymphocytes. Whole venous blood (5 mL) was cultured for 48 h at 37 °C in RPMI 1640 medium (Sigma, USA) supplemented with 0.1 mL/mL phytohemagglutinin (PHA, Sigma, USA) and 15% fetal calf serum. Colchicine (Serva, Germany, 10 μg/mL) was added 2 h before harvest to arrest cell division. Chromosomal preparations were stained with 2% Giemsa solution (Merck) and analyzed at 1000x magnification using an Axiostar plus microscope (Carl Zeiss, Germany). Routine, G-, and Ag-banding were performed to determine the spontaneous rate of chromosome aberrations and the level of chromosomal variability. Metaphase spreads were photographed with an Olympus D-460 ZOOM digital camera. Statistical analysis was performed using Microsoft Excel 2010.
Results. The diploid chromosomal set of the studied animals consists of 50 chromosomes (2n = 48, XX; 2n = 48, XY). Aneuploid and polyploid cells were discove­red at rates 7.70±1.59 % and 0.35±0.053 % respectively, as well as cells with structural aberrations of autosomes. The overall rate of cells with dysfunctions amounted to 12.55±2.00 %. The rate of chromosomal aberrations in males and females diffe­red insignificantly and amounted to 12.60 % and 11.30 % respectively. We detected individuals with cells with monosomy X0. Ag-banding revealed nucleolus organizer regions (NOR) in six chromosomes of the karyotype of the studied buffaloes – 3, 4, 6, 21, 23, 24. Individual variation of animals by the NOR number was deduced from 1 to 12 per cell, with an average of 2,82.
Conclusions. Cytogenetic research can be used for the preservation of diversity and improvement of breeding programs for the Ukrainian river buffalo population.


Keywords


river buffalo, karyotype, chromosomes, aberrations

Full Text:

PDF

References


Ahmed, S. (2005). New classes of fragile sites in buffalo chromosomes. Cytologia, 70(4), 415-419. doi:10.1508/cytologia.70.415
CrossrefGoogle Scholar

Cailipan, T. P., Paraguas, A., Cuanang, A. J., Soliven, N. F. J., Roño, J. G., Fontanilla, F., Servo, E., Cao, E., Fontanilla, I. K., & Villamor, L. (2023). Molecular data and karyotype revealed two distinct species of domesticated water buffaloes in the Philippines. Philippine Journal of Science, 152(5). doi:10.56899/152.05.27
CrossrefGoogle Scholar

Castelló, J. R. (2016). Bovids of the world: antelopes, gazelles, cattle, goats, sheep, and relatives (pp. 596-601). Princeton: Princeton University Press. doi:10.1002/jwmg.21197.0
CrossrefGoogle Scholar

Degrandi, T. M., Pita, S., Panzera, Y., Oliveira, E. H. C. de, Marques, J. R. F., Figueiró, M. R., Marques, L. C., Vinadé, L., Gunski, R. J., & Garnero, A. D. V. (2014). Karyotypic evolution of ribosomal sites in buffalo subspecies and their crossbreed. Genetics and Molecular Biology, 37(2), 375-380. doi:10.1590/s1415-47572014000300009
CrossrefPubMedPMCGoogle Scholar

Dzitsiuk, V., Guzevatiy, O., Lytvynenko, T., & Guzeev, Yu. (2020). Genetic polymorphism of buffalo Bubalus bubalis bubalis by cytogenetic and molecular markers. Agricultural Science and Practice, 7(1), 24-31. doi:10.15407/agrisp7.01.024
CrossrefGoogle Scholar

Guzeev, Yu. (2014). Buffalo - the unique biodiversity of cattle Ukraine. Animal Husbandry of Ukraine, 3-4, 5-8. (In Ukrainian)
Google Scholar

Guzeyev, Yu., Melnyk, O., Gladyr, O., & Zinovieva, N. (2016). Population-genetic monitoring of the Ukrainian population of buffaloes (Bubalus bubalis) using 11 microsatellite DNA loci. Animal Husbandry Products Production and Processing, 1, 88-95. (In Ukrainian)
Google Scholar

Iannuzzi, A., Parma, P., & Iannuzzi, L. (2021). Chromosome abnormalities and fertility in domestic bovids: a review. Animals, 11(3), 802. doi:10.3390/ani11030802
CrossrefPubMedPMCGoogle Scholar

IIannuzzi, L. (2007). The water buffalo: evolutionary, clinical and molecular cytogenetics. Italian Journal of Animal Science, 6(2), 227-236. doi:10.4081/ijas.2007.s2.227
CrossrefGoogle Scholar

Iannuzzi, L., Di Meo, G. P., Perucatti, A., & Zicarelli, L. (2000). Sex chromosome monosomy (2n=49,X) in a river buffalo (Bubalus bubalis). Veterinary Record, 147(24), 690-691.
PubMedGoogle Scholar

Iannuzzi, L., Di Meo, G. P., Perucatti, A., Incarnato, D., Palo, R. D., & Zicarelli, L. (2004). Reproductive disturbances and sex chromosome abnormalities in two female river buffaloes. Veterinary Record, 154(26), 823-824. doi:10.1136/vr.154.26.823
CrossrefPubMedGoogle Scholar

Li, W., Bickhart, D. M., Ramunno, L., Iamartino, D., Williams, J. L., & Liu, G. E. (2019). Comparative sequence alignment reveals river buffalo genomic structural differences compared with cattle. Genomics, 111(3), 418-425. doi:10.1016/j.ygeno.2018.02.018
CrossrefPubMedGoogle Scholar

Patel, R. K., Kotikalapudi, R., Medidi, H., Sugali, N. N., & Vallabhaneni, L. S. S. (2015). Structural chromosome mosaicism in peripheral blood cells of Murrah buffalo (Bubalus bubalis). Journal of Chemical, Biological and Physical Sciences, 5(4), 4224-4230.
Google Scholar

Ploton, D., Menager, M., Jeannesson, P., Himber, G., Pigeon, F., & Adnet, J. J. (1986). Improvement in the staining and in the visualization of the argyrophilic proteins of the nucleolar organizer region at the optical level. The Histochemical Journal, 18(1), 5-14. doi:10.1007/bf01676192
CrossrefPubMedGoogle Scholar

Rehman, S. U., Hassan, F., Luo, X., Li, Z., & Liu, Q. (2021). Whole-genome sequencing and characterization of buffalo genetic resources: recent advances and future challenges. Animals, 11(3), 904. doi:10.3390/ani11030904
CrossrefPubMedPMCGoogle Scholar

Seabright, M. (1971). A rapid banding technigue for human chromosomes. The Lancet, 298(7731), 971-972. doi:10.1016/s0140-6736(71)90287-x
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Valentyna Dzitsiuk, Tetyana Ryk, Tamara Lytvynenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.