ANDROGEN SYNTHESIZING ACTIVITY OF CRYOPRESERVED TESTICULAR INTERSTITIAL CELLS UPON TRANSPLANTATION

Oleksandr Pakhomov, Olena Protsenko, Natalia Remnyova, Natalia Tkachenko, Viacheslav Mamontov


DOI: http://dx.doi.org/10.30970/sbi.1904.857

Abstract


Background. Cells isolated from the testes of mammals and humans can be used for scientific purposes, maintaining certain animal lines and breeds, preserving biological material from endangered species, as well as in reproductive technologies. Most approaches for cryopreserving such cells utilize blood serum (or its derivatives) and dimethyl sulfoxide (DMSO). This can lead to unstable results, the spread of infections, altered expression of certain cell genes, and the manifestation of DMSO’s toxic effects. In our previous studies, serum-free media for testicular interstitial cells (ICs) were develo­ped; the aim of this work was to investigate their ability to synthesize testo­sterone after cryopreservation.
Materials and Methods. ICs were obtained from mature rats via enzymatic digestion and cryopreserved in solutions containing 0.7 M DMSO and 100 mg/mL of one of the following polymers: dextran 40, hydroxyethyl starch, polyethylene oxide, or 1.4 M DMSO and 10% fetal bovine serum (FBS). The cooling rate was 1 °C/min. After cryopreservation, the cells were thawed in a water bath, the DMSO was removed, and their ability for basal and stimulated testosterone synthesis in vitro was assessed. Additionally, ICs were transplanted into castrated animals, and changes in free testosterone blood levels, seminal vesicle weight, and sexual behavior were examined.
Results. The capacity for stimulated testosterone synthesis was preserved only in cells cryopreserved in the solution containing dextran 40 (0.7DMSO + D40) and FBS (1.4DMSO + FBS). Cryopreserved ICs enhanced sexual behavior parameters in castrated rats upon transplantation without removing the cryoprotective medium (0.7DMSO + D40), including mount and intromission latency, the mount and intromission frequency, ejaculation ability, and copulatory efficiency. Moreover, they helped maintain free testosterone blood levels and seminal vesicle weight in castrated animals after transplantation.
Conclusions. It was demonstrated that ICs cryopreserved in the serum-free medium (0.7DMSO + D40) retained their ability to synthesize and secrete testosterone. Furthermore, the use of 0.7DMSO + D40 allows the immediate use of cells after thawing, bypassing the step of cryoprotectant removal, which could facilitate the translation of experimental protocols into practice.


Keywords


DMSO, testicular cells, dextran, cryopreservation, transplantation, testosterone, sexual behavior

Full Text:

PDF

References


Awan, M., Erro, E., Forster-Brown, E., Brookshaw, T., Chandel, S., Chalmers, S.-A., Watt, A., Fuller, B., & Selden, C. (2022). Dimethyl sulfoxide for cryopreservation of alginate encapsulated liver cell spheroids in bioartificial liver support; assessments of cryoprotectant toxicity tolerance and dilution strategies. Cryobiology, 106, 79-83. doi:10.1016/j.cryobiol.2022.03.007
CrossrefPubMedGoogle Scholar

Awan, M., Buriak, I., Fleck, R., Fuller, B., Goltsev, A., Kerby, J., Lowdell, M., Mericka, P., Petrenko, A., Petrenko, Y., Rogulska, O., Stolzing, A., & Stacey, G. N. (2020). Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine, 15(3), 1463-1491. doi:10.2217/rme-2019-0145
CrossrefPubMedGoogle Scholar

Chen, G.-R., Ge, R.-S., Lin, H., Dong, L., Sottas, C. M., & Hardy, M. P. (2007). Development of a cryopreservation protocol for Leydig cells. Human Reproduction, 22(8), 2160-2168. doi:10.1093/humrep/dem169
CrossrefPubMedGoogle Scholar

Ehn, K., Wikman, A., Uhlin, M., & Sandgren, P. (2023). Cryopreserved platelets in a non-toxic DMSO-free solution maintain hemostatic function in vitro. International Journal of Molecular Sciences, 24(17), 13097. doi:10.3390/ijms241713097
CrossrefPubMedPMCGoogle Scholar

Ghio, S. C., Barbier, M. A., Doucet, E. J., Debbah, I., Safoine, M., Le-Bel, G., Cartier, A., Jolibois, E., Morissette, A., Larouche, D., Fradette, J., Guérin, S. L., Garnier, A., & Germain, L. (2023). A newly developed chemically defined serum-free medium suitable for human primary keratinocyte culture and tissue engineering applications. International Journal of Molecular Sciences, 24(3), 1821. doi:10.3390/ijms24031821
CrossrefPubMedPMCGoogle Scholar

Hassan, S. N., & Ahmad, F. (2024). Considering dimethyl sulfoxide solvent toxicity to mammalian cells and its biological effects. Experimental Oncology, 46(2), 174-178. doi:10.15407/exp-oncology.2024.02.174
CrossrefPubMedGoogle Scholar

Ikeda, K., Minakawa, K., Yamahara, K., Yamada-Fujiwara, M., Okuyama, Y., Fujiwara, S. I., Yamazaki, R., Kanamori, H., Iseki, T., Nagamura-Inoue, T., Kameda, K., Nagai, K., Fujii, N., Ashida, T., Hirose, A., Takahashi, T., Ohto, H., Ueda, K., & Tanosaki, R. (2022). Comparison of cryoprotectants in hematopoietic cell infusion-related adverse events. Transfusion, 62(6), 1280-1288. doi:10.1111/trf.16877
CrossrefPubMedGoogle Scholar

Ikeda, K., Ohto, H., Yamada-Fujiwara, M., Okuyama, Y., Fujiwara, S. I., Muroi, K., Mori, T., Kasama, K., Kanamori, H., Iseki, T., Nagamura-Inoue, T., Kameda, K., Kanda, J., Nagai, K., Fujii, N., Ashida, T., Hirose, A., Takahashi, T., Minakawa, K., & Tanosaki, R. (2020). Hematopoietic cell infusion-related adverse events in pediatric/small recipients in a prospective/multicenter study. Transfusion, 60(5), 1015-1023. doi:10.1111/trf.15786
CrossrefPubMedGoogle Scholar

Izadyar, F., Matthijs-Rijsenbilt, J. J., Den Ouden, K., Creemers, L. B., Woelders, H., & de Rooij, D. G. (2002). Development of a cryopreservation protocol for type A spermatogonia. Journal of Andrology, 23(4), 537-545. doi:10.1002/j.1939-4640.2002.tb02276.x
CrossrefPubMedGoogle Scholar

Johnson, L., Lei, P., Roan, C., & Marks, D. C. (2025). Development of a simplified platelet cryopreservation method: an in vitro investigation of reducing the DMSO concentration to allow administration without its pre-transfusion removal. Vox Sanguinis, 120(3), 284-292. doi:10.1111/vox.13789
CrossrefPubMedGoogle Scholar

Júnior, A. M., Arrais, C. A., Saboya, R., Velasques, R. D., Junqueira, P. L., & Dulley, F. L. (2008). Neurotoxicity associated with dimethylsulfoxide-preserved hematopoietic progenitor cell infusion. Bone Marrow Transplantation, 41(1), 95-96. doi:10.1038/sj.bmt.1705883
CrossrefPubMedGoogle Scholar

Keros, V., Rosenlund, B., Hultenby, K., Aghajanova, L., Levkov, L., & Hovatta, O. (2005). Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Human Reproduction, 20(6), 1676-1687. doi:10.1093/humrep/deh797
CrossrefPubMedGoogle Scholar

Lima, D. B. C., & Silva, L. D. M. da. (2017). Cryopreservation of testicular tissue: an alternative to maintain the reproductive capacity in different animal species. Ciência Rural, 47(11), e20170135. doi:10.1590/0103-8478cr20170135
CrossrefGoogle Scholar

Lindroos, B., Boucher, S., Chase, L., Kuokkanen, H., Huhtala, H., Haataja, R., Vemuri, M., Suuronen, R., & Miettinen, S. (2009). Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy, 11(7), 958-972. doi:10.3109/14653240903233081
CrossrefPubMedGoogle Scholar

Mokhtari, M., & Zanboori, M. (2011). The effects of lead acetate on sexual behavior and the level of testosterone in adult male rats. International Journal of Fertility & Sterility, 5(1), 13-20.
PubMedPMCGoogle Scholar

Pakhomov, O., Gurina, T., Mazaeva, V., Polyakova, A., Deng, B., Legach, E., & Bozhok, G. (2022). Phase transitions and mechanisms of cryoprotection of serum-/xeno-free media based on dextran and dimethyl sulfoxide. Cryobiology, 107, 13-22. doi:10.1016/j.cryobiol.2022.06.004
CrossrefPubMedGoogle Scholar

Patra, T., Pathak, D., & Gupta, M. K. (2021). Strategies for cryopreservation of testicular cells and tissues in cancer and genetic diseases. Cell and Tissue Research, 385(1), 1-19. doi:10.1007/s00441-021-03437-4
CrossrefPubMedGoogle Scholar

Riedhammer, C., Halbritter, D., & Weissert, R. (2014). Peripheral blood mononuclear cells: isolation, freezing, thawing, and culture. In: R. Weissert (Ed.), Multiple sclerosis. Methods in molecular biology (Vol. 1304, pp. 53-61). New York: Humana Press. doi:10.1007/7651_2014_99
CrossrefPubMedGoogle Scholar

Silva, A. M. da, Pereira, A. F., Comizzoli, P., & Silva, A. R. (2020). Cryopreservation and culture of testicular tissues: an essential tool for biodiversity preservation. Biopreservation and Biobanking, 18(3), 235-243. doi: 10.1089/bio.2020.0010
CrossrefPubMedGoogle Scholar

Tai, J., Tze, W., & Johnson, H. (1994). Cryopreservation of rat Leydig cells for in vitro and in vivo studies. Hormone and Metabolic Research, 26(03), 145-147. doi:10.1055/s-2007-1000796
CrossrefPubMedGoogle Scholar

Wyns, C., Curaba, M., Vanabelle, B., Van Langendonckt, A., & Donnez, J. (2010). Options for fertility preservation in prepubertal boys. Human Reproduction Update, 16(3), 312-328. doi:10.1093/humupd/dmp054
CrossrefPubMedGoogle Scholar

Yamatoya, K., Nagai, Y., Teramoto, N., Kang, W., Miyado, K., Nakata, K., Yagi, T., & Miyamoto, Y. (2022). Cryopreservation of undifferentiated and differentiated human neuronal cells. Regenerative Therapy, 19, 58-68. doi:10.1016/j.reth.2021.12.007
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Oleksandr Pakhomov, Olena Protsenko, Natalia Remnyova, Natalia Tkachenko, Viacheslav Mamontov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.