MODULATION OF RAT AORTIC CONTRACTIONS BY ULTRADISPERSE TiO2 NANOPARTICLES OF CRYSTALLINE FORMS OF ANATASE AND RUTILE

Platon Zub, Olga Tsymbalyuk, Oleksandr Chunikhin, Tamara Davydovska, Stanislav Myakushko, Khrystyna Sholota, Ivan Voiteshenko, Oleksandr Tsuvariev, Sergiy Sukhopara, Valerii Skryshevskyi


DOI: http://dx.doi.org/10.30970/sbi.1902.828

Abstract


Background. The nanopowder of titanium dioxide (ТіО2) is among the most demanded industrial nanomaterials; thus, it is widely used in the food industry, medicine, cosmetics production, and agriculture. It creates  preconditions for constant, daily input of these particles into the organism. ТіО2 nanoparticles are known to impact the functioning of the vascular endothelium cells, changing their response to acetylcholine. However, there is almost no information about possible effects of this nanomaterial on the processes of inducing the contractile function of the vessels, using epinephrine and the activation of voltage-gated Са2+-channels. Another interesting issue is the study of polymorph-dependent effects of ТіО2 nanoparticles (NPs).
This study was aimed at investigating the effect of ultradisperse ТіО2 nanoparticles of crystalline forms of anatase and rutile on the contractions of smooth muscle preparations of rat aorta, induced by the depolarization of the plasma membranes of myocytes and epinephrine-activated contractions.
Materials and Methods. The commercial preparations of TiO2 nanoparticles (PlasmaChem GmbH, D-12489 Berlin, Germany) in the form of nanopowder with the average size of particles of 1–3 nm (crystalline form of rutile) and 4–8 nm (crystalline form of anatase) were used in the study. The determination of the average hydrodynamic diameter of ТіО2 nanoparticles in the suspension involved the method of dynamic light scattering.
The tenzometric experiments were conducted in the isometric and isotonic registration modes using the rings of rat thoracic aorta with preserved endothelium. The contractions of aortic isolated preparations were induced by the application of a high-potassium solution (80 mM), the activator of L-type voltage-gated Са2+-channels Bay K8644, and a non-selective agonist of adrenoreceptors, epinephrine. The contractions were analysed by the methods of mechanokinetic analysis with the estimation of maximal velocities of the contraction and relaxation phases.
Results. It was determined that both polymorphs of ТіО2 (at the fixed concentration of 10-4 mg/mL and 30 min pre-incubation) equally (approximately by one-third) activated the isometric and isotonic contractile responses of the aortic isolated  preparations to the application of the high-potassium solution (80 mM) and the activator of Са2+-channels Bay K8644 (5 μM). In all cases, the parameters of the normalized maximal velocities of the phases of contraction and relaxation (VnC and VnR) remained at the control level. It was also found that under similar conditions of application, both types of ТіО2 NPs equally (more than twice as compared to the control) inhibited the amplitude of epinephrine-induced (1 μM) contractions of the aortic preparations.
Conclusions. Ultradisperse ТіО2 NPs in a polymorph-independent manner enhance aortic contractions in the case of potential-dependent input of Са2+ ions. These nanoparticles also induce the inhibition of catecholaminergic contractions of aortic smooth muscles, which may occur due to the chelating of catecholamines by ТіО2.


Keywords


aorta, ultradisperse nanoparticles of titanium dioxide, voltage-gated Са2+-channels, epinephrine, mechanokinetic parameters

Full Text:

PDF

References


Baranowska-Wójcik, E., Szwajgier, D., & Winiarska-Mieczan, A. (2022). A review of research on the impact of E171/TiO2 NPs on the digestive tract. Journal of Trace Elements in Medicine and Biology, 72, 126988. doi:10.1016/j.jtemb.2022.126988
CrossrefPubMedGoogle Scholar

Burdyga, T. V., & Kosterin, S. A. (1991). Kinetic analysis of smooth muscle relaxation. General Physiology and Biophysics, 10(6), 589-598.
PubMedGoogle Scholar

Calderón-Garcidueñas, L., & Ayala, A. (2022). Air pollution, ultrafine particles, and your brain: are combustion nanoparticle emissions and engineered nanoparticles causing preventable fatal neurodegenerative diseases and common neuropsychiatric outcomes? Environmental Science & Technology, 56(11), 6847-6856. doi:10.1021/acs.est.1c04706
CrossrefPubMedGoogle Scholar

Cao, Y., Gong, Y., Liao, W., Luo, Y., Wu, C., Wang, M., & Yang, Q. (2018). A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). BioMetals, 31(4), 457-476. doi:10.1007/s10534-018-0113-7
CrossrefPubMedGoogle Scholar

Chen, T., Hu, J., Chen, C., Pu, J., Cui, X., & Jia, G. (2013). Cardiovascular effects of pulmonary exposure to titanium dioxide nanoparticles in ApoE knockout mice. Journal of Nanoscience and Nanotechnology, 13(5), 3214-3222. doi:10.1166/jnn.2013.7147
CrossrefPubMedGoogle Scholar

Cheng, W., Xu, X., Lang, Y., Cheng, Z., Rizwan, M., Tang, X., Xie, L., Liu, Y., Xu, H., & Liu, Y. (2021). Anatase and rutile TiO2 nanoparticles lead effective bone damage in young rat model via the IGF-1 signaling pathway. International Journal of Nanomedicine, 16, 7233-7247. doi:10.2147/ijn.s333632
CrossrefPubMedPMCGoogle Scholar

Creutz, C., & Chou, M. H. (2008). Binding of catechols to mononuclear titanium(IV) and to 1- and 5-nm TiO2 nanoparticles. Inorganic Chemistry, 47(9), 3509-3514. doi:10.1021/ic701687k
CrossrefPubMedGoogle Scholar

Domingues, L. A. C. S., Carriello, G. M., Pegoraro, G. M., & Mambrini, G. P. (2024). Synthesis of TiO2 nanoparticles by the solvothermal method and application in the catalysis of esterification reactions. Anais da Academia Brasileira de Ciencias, 96(3), e20240096. doi:10.1590/0001-3765202420240096
CrossrefPubMedGoogle Scholar

Duan, S., Wang, H., Gao, Y., Wang, X., Lyu, L., & Wang, Y. (2023). Oral intake of titanium dioxide nanoparticles affect the course and prognosis of ulcerative colitis in mice: involvement of the ROS-TXNIP-NLRP3 inflammasome pathway. Particle and Fibre Toxicology, 20(1), 24. doi:10.1186/s12989-023-00535-9
CrossrefPubMedPMCGoogle Scholar

Eckert, R. E., Karsten, A. J., Utz, J., & Ziegler, M. (2000). Regulation of renal artery smooth muscle tone by α1-adrenoceptors: role of voltage-gated calcium channels and intracellular calcium stores. Urological Research, 28(2), 122-127. doi:10.1007/s002400050149
CrossrefPubMedGoogle Scholar

Eker, F., Duman, H., Akdaşçi, E., Bolat, E., Sarıtaş, S., Karav, S., & Witkowska, A. M. (2024). A comprehensive review of nanoparticles: from classification to application and toxicity. Molecules, 29(15), 3482. doi:10.3390/molecules29153482
CrossrefPubMedPMCGoogle Scholar

Fernández-Reina, A., Urdiales, J. L., & Sánchez-Jiménez, F. (2018). What we know and what we need to know about aromatic and cationic biogenic amines in the gastrointestinal tract. Foods, 7(9), 145. doi:10.3390/foods7090145
CrossrefPubMedPMCGoogle Scholar

Hadrup, N., Vogel, U., & Jacobsen, N. R. (2024). Biokinetics of carbon black, multi-walled carbon nanotubes, cerium oxide, silica, and titanium dioxide nanoparticles after inhalation: a review. Nanotoxicology, 18(8), 678-706. doi:10.1080/17435390.2024.2431242
CrossrefPubMedGoogle Scholar

Jensen, D. M., Christophersen, D. V., Sheykhzade, M., Skovsted, G. F., Lykkesfeldt, J., Münter, R., Roursgaard, M., Loft, S., & Møller, P. (2018). Vasomotor function in rat arteries after ex vivo and intragastric exposure to food-grade titanium dioxide and vegetable carbon particles. Particle and Fibre Toxicology, 15(1), 12. doi:10.1186/s12989-018-0248-2
CrossrefPubMedPMCGoogle Scholar

Jovanović, B. (2015). Critical review of public health regulations of titanium dioxide, a human food additive. Integrated Environmental Assessment and Management, 11(1), 10-20. doi:10.1002/ieam.1571
CrossrefPubMedPMCGoogle Scholar

Khan, J., Kim, N. D., Bromhead, C., Truman, P., Kruger, M. C., & Mallard, B. L. (2025). Hepatotoxicity of titanium dioxide nanoparticles. Journal of Applied Toxicology, 45(1), 23-46. doi:10.1002/jat.4626
CrossrefPubMedPMCGoogle Scholar

Kosterin, S, & Tsymbalyuk, O. (2023) Mechanokinetics and power of the spontaneous isotonic contraction of visceral smooth muscles. Series on Biomechanics, 37(3), 43-56, doi:10.7546/sb.07.03.2023
CrossrefGoogle Scholar

Kosterin, S., Tsymbalyuk, O., & Holden, O. (2021). Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Series on Biomechanics, 35(1), 14-30.
Google Scholar

LeBlanc, A. J., Cumpston, J. L., Chen, B. T., Frazer, D., Castranova, V., & Nurkiewicz, T. R. (2009). Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. Journal of Toxicology and Environmental Health, Part A, 72(24), 1576-1584. doi:10.1080/15287390903232467
CrossrefPubMedPMCGoogle Scholar

Lee, S. H., Park, K. E., Eum, K., Hwang, Y., Ok, S. H., Sim, G., Perera, D., Ravald, H. K. M., Park, Y., Wiedmer, S. K., & Sohn, J. T. (2024). Effect of lipid emulsion on vasoconstriction induced by epinephrine or norepinephrine in isolated rat aorta. Korean Journal of Anesthesiology, 77(5), 555-564. doi:10.4097/kja.24093
CrossrefPubMedPMCGoogle Scholar

Mikkelsen, L., Sheykhzade, M., Jensen, K. A., Saber, A. T., Jacobsen, N. R., Vogel, U., Wallin, H., Loft, S., & Møller, P. (2011). Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO2. Particle and Fibre Toxicology, 8(1), 32. doi:10.1186/1743-8977-8-32
CrossrefPubMedPMCGoogle Scholar

Minghui, F., Ran, S., Yuxue, J., & Minjia, S. (2023). Toxic effects of titanium dioxide nanoparticles on reproduction in mammals. Frontiers in Bioengineering and Biotechnology, 11, 1183592. doi:10.3389/fbioe.2023.1183592
CrossrefPubMedPMCGoogle Scholar

Mu, X., Hu, K., Wei, A., Bai, J., Feng, L., & Jiang, J. (2023). TiO2 nanoparticles promote tumor metastasis by eliciting pro-metastatic extracellular vesicles. Journal of Nanobiotechnology, 21(1), 392. doi:10.1186/s12951-023-02142-4
CrossrefPubMedPMCGoogle Scholar

Murillo, M. D. P., Johansson, E., Bryntesson, V., Aronsson, P., Tobin, G., Winder, M., & Carlsson, T. (2023). 6-OHDA-induced changes in colonic segment contractility in the rat model of Parkinson's disease. Gastroenterology Research and Practice, 2023, 9090524. doi:10.1155/2023/9090524
CrossrefPubMedPMCGoogle Scholar

Musial, J., Krakowiak, R., Mlynarczyk, D. T., Goslinski, T., & Stanisz, B. J. (2020). Titanium dioxide nanoparticles in food and personal care products - what do we know about their safety? Nanomaterials, 10(6), 1110. doi:10.3390/nano10061110
CrossrefPubMedPMCGoogle Scholar

Natale, G., Ryskalin, L., Busceti, C. L., Biagioni, F., & Fornai, F. (2017). The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration. Archives Italiennes de Biologie, 155(3), 118-130. doi:10.12871/00039829201733
CrossrefPubMedGoogle Scholar

Nefedova, A., Svensson, F. G., Vanetsev, A. S., Agback, P., Agback, T., Gohil, S., Kloo, L., Tätte, T., Ivask, A., Seisenbaeva, G. A., & Kessler, V. G. (2024). Molecular mechanisms in metal oxide nanoparticle - tryptophan interactions. Inorganic Chemistry, 63(19), 8556-8566. doi:10.1021/acs.inorgchem.3c03674
CrossrefPubMedPMCGoogle Scholar

Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., Cumpston, J. L., Chen, B. T., Frazer, D. G., & Castranova, V. (2008). Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Particle and Fibre Toxicology, 5(1), 1. doi:10.1186/1743-8977-5-1
CrossrefPubMedPMCGoogle Scholar

Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., Stone, S., Chen, B. T., Frazer, D. G., Boegehold, M. A., & Castranova, V. (2009). Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicological Sciences, 110(1), 191-203. doi:10.1093/toxsci/kfp051
CrossrefPubMedPMCGoogle Scholar

Pokharkar, V., Chandak, S., Pawar, R., & Khandke, A. (2025). The implications of the EU ban on titanium dioxide: a comprehensive review of safety concerns and alternatives. Annales Pharmaceutiques Francaises, 83(3), 438-444. doi:10.1016/j.pharma.2024.11.002
CrossrefPubMedGoogle Scholar

Silva, R. M., Teesy, C., Franzi, L., Weir, A., Westerhoff, P., Evans, J. E., & Pinkerton, K. E. (2013). Biological response to nano-scale titanium dioxide (TiO2): role of particle dose, shape, and retention. Journal of Toxicology and Environmental Health, Part A, 76(16), 953-972. doi:10.1080/15287394.2013.826567
CrossrefPubMedPMCGoogle Scholar

Tae, E. L., Lee, S. H., Lee, J. K., Yoo, S. S., Kang, E. J., & Yoon, K. B. (2005). A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. The Journal of Physical Chemistry B, 109(47), 22513-22522. doi:10.1021/jp0537411
CrossrefPubMedGoogle Scholar

Tassinari, R., Tammaro, A., Martinelli, A., Valeri, M., & Maranghi, F. (2023). Sex-specific effects of short-term oral administration of food-grade titanium dioxide nanoparticles in the liver and kidneys of adult rats. Toxics, 11(9), 776. doi:10.3390/toxics11090776
CrossrefPubMedPMCGoogle Scholar

Traserra, S., Grao, M., Trujillo, S., Jiménez-Altayó, F., Vergara, P., & Jimenez, M. (2025). Pharmacological characterization of alpha adrenoceptor-mediated motor responses in the rat colon. Neurogastroenterology and Motility, 37(1), e14921. doi:10.1111/nmo.14921
CrossrefPubMedPMCGoogle Scholar

Tripathy, D. B., Pradhan, S., Gupta, A., & Agarwal, P. (2025). Nanoparticles induced neurotoxicity. Nanotoxicology, 1-28. doi:10.1080/17435390.2025.2488310
CrossrefPubMedGoogle Scholar

Tsymbalyuk, O. V., Davydovska, T. L., Naumenko, A. M., Voiteshenko, I. S., Veselsky, S. P., Nyporko, A. Y., Pidhaietska, A. Y., Kozolup, M. S., & Skryshevsky, V. A. (2023). Mechanisms of regulation of motility of the gastrointestinal tract and the hepatobiliary system under the chronic action of nanocolloids. Scientific Reports, 13(1), 3823. doi:10.1038/s41598-023-30958-5
CrossrefPubMedPMCGoogle Scholar

Tsymbalyuk, O. V., Naumenko, A. M., & Davidovska, T. L. (2019). Influence of nano-TiO2 on the functioning of gastric smooth muscles: in vitro and in silico studies. Studia Biologica, 13(1), 3-26, doi:10.30970/sbi.1301.592
CrossrefGoogle Scholar

Wang, M., Yang, Q., Long, J., Ding, Y., Zou, X., Liao, G., & Cao, Y. (2018). A comparative study of toxicity of TiO2, ZnO, and Ag nanoparticles to human aortic smooth-muscle cells. International Journal of Nanomedicine, 13, 8037-8049. doi:10.2147/ijn.s188175
CrossrefPubMedPMCGoogle Scholar

Wani, S. A., Khan, L. A., & Basir, S. F. (2018). Role of calcium channels and endothelial factors in nickel induced aortic hypercontraction in Wistar rats. Journal of Smooth Muscle Research, 54(0), 71-82. doi:10.1540/jsmr.54.71
CrossrefPubMedPMCGoogle Scholar

Wani, S. A., Khan, L. A., & Basir, S. F. (2020). Cobalt-induced hypercontraction is mediated by generation of reactive oxygen species and influx of calcium in isolated rat aorta. Biological Trace Element Research, 196(1), 110-118. doi:10.1007/s12011-019-01890-5
CrossrefPubMedGoogle Scholar

Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242-2250. doi:10.1021/es204168d
CrossrefPubMedPMCGoogle Scholar

Wu, H. P., Cheng, T. L., & Tseng, W. L. (2007). Phosphate-modified TiO2 nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching. Langmuir, 23(14), 7880-7885. doi:10.1021/la700555y
CrossrefPubMedGoogle Scholar

Yang, Z., Li, Y., Huang, M., Li, X., Fan, X., Yan, C., Meng, Z., Liao, B., Hamdani, N., Yang, X., Zhou, X., El-Battrawy, I., & Akin, I. (2024). Roles and mechanisms of dopamine receptor signaling in catecholamine excess induced endothelial dysfunctions. International Journal of Medical Sciences, 21(10), 1964-1975. doi:10.7150/ijms.96550
CrossrefPubMedPMCGoogle Scholar

Zeng, C., Armando, I., Luo, Y., Eisner, G. M., Felder, R. A., & Jose, P. A. (2008). Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. American Journal of Physiology - Heart and Circulatory Physiology, 294(2), H551-H569. doi:10.1152/ajpheart.01036.2007
CrossrefPubMedPMCGoogle Scholar

Zhang, X., Song, Y., Gong, H., Wu, C., Wang, B., Chen, W., Hu, J., Xiang, H., Zhang, K., & Sun, M. (2023). Neurotoxicity of titanium dioxide nanoparticles: a comprehensive review. International Journal of Nanomedicine, 18, 7183-7204. doi:10.2147/ijn.s442801
CrossrefPubMedPMCGoogle Scholar

Zhu, H. C., Zhao, J., Luo, C. Y., & Li, Q. Q. (2012). Gastrointestinal dysfunction in a Parkinson's disease rat model and the changes of dopaminergic, nitric oxidergic, and cholinergic neurotransmitters in myenteric plexus. Journal of Molecular Neuroscience, 47(1), 15-25. doi:10.1007/s12031-011-9560-0
CrossrefPubMedPMCGoogle Scholar

Zizzo, M. G., Bellanca, A., Amato, A., & Serio, R. (2020). Opposite effects of dopamine on the mechanical activity of circular and longitudinal muscle of human colon. Neurogastroenterology and Motility, 32(6), e13811. doi:10.1111/nmo.13811
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Platon Zub, Olga Tsymbalyuk, Oleksandr Chunikhin, Tamara Davydovska, Stanislav Myakushko, Khrystyna Sholota, Ivan Voiteshenko, Oleksandr Tsuvariev, Sergiy Sukhopara, Valerii Skryshevskyi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.