INTERNAL LIPIDS OF SHEEP WOOL WHEN A WATER-SOLUBLE COMPLEX OF FATTY ACIDS IS INCLUDED INTO THEIR DIET

Vitalii Tkachuk, Bogdan Kyryliv, Nataliia Ohorodnyk, Nataliia Motko


DOI: http://dx.doi.org/10.30970/sbi.1903.834

Abstract


Background. An effective way to increase the productivity of sheep is through the use of fats in their feeding. With this in mind, the effect of a water-soluble complex of fatty acids on the internal lipids of wool sheep has been studied.
Materials and Methods. The diet of ewes of the Prekos breed of the research group included 3 % of a water-soluble complex of fatty acids – the essential lipid comp­lex (ELC): linoleic – 54.5 %, oleic – 24 %, palmitic – 10 %, arachidonic – 6 %, stearic – 4 %, and linolenic – 1.5 %. Wool productivity was calculated over a skin area of 36 cm2, and the live weight gain of lambs was measured at birth and again in 21 days. Free internal lipids were released by extraction in a Soxhlet apparatus, and bound lipids were released after preliminary alkaline hydrolysis. Wool strength was determined using the DSh-3M apparatus.
Results. The emulsion of fatty acids contributes to the intensification of wool and milk production processes, as evidenced by an increase in wool growth in ewes by 28.8%, and an increase in the live weight of lambs by 9.7 %.
The total amount of both free (Р <0.05) and bound internal lipids (Р <0.05) increased in the wool of experimental ewes. In the composition of free lipids, the content of non-esterified fatty acids (Р <0.05) and non-esterified cholesterol (Р <0.05) significantly decreases, while its esterified fraction increases (Р <0.01). The same trend was noted in covalently bound lipids, but only a decrease in non-esterified cholesterol in lambs was observed. These changes indicate a slowdown in lipid oxidation processes under the influence of the dietary factors applied.
In the composition of both free and bound internal lipids, the content of ceramides significantly increased (Р <0.05), applying to both the wool of ewes and the lambs obtained from them. In bound lipids, in ewes, a significant increase in glucosyl ceramides was noted (Р <0.05), and in lambs, in cholesterol sulfate (Р <0.001).
Changes in the quantitative and qualitative composition of internal lipids lead to an increase in wool strength from 7.38 to 8.03 cN/tex, i.e. by 8.8 % (Р <0.05).
Conclusion. Feeding emulsion of fatty acids to ewes leads to an increase in productivity and positively influences both the quantitative and qualitative composition of internal lipids in the wool of ewes and their lambs.


Keywords


wool, emulsion, gains, internal lipids, ceramides, strength

Full Text:

PDF

References


Ahmadzadeh-Gavahan, L., Hosseinkhani, A., Palangi, V., & Lackner, M. (2023). Supplementary feed additives can improve lamb performance in terms of birth weight, body size, and survival rate. Animals, 13(6), 993. doi:10.3390/ani13060993
CrossrefPubMedPMCGoogle Scholar

Akintan, O., Gebremedhin, K. G., & Uyeh, D. D. (2024). Animal feed formulation - connecting technologies to build a resilient and sustainable system: review. Animals, 14(10), 1497. doi:10.3390/ani14101497
CrossrefPubMedPMCGoogle Scholar

Alba, H. D. R., Freitas Júnior, J. E. de, Leite, L. C., Azevêdo, J. A. G., Santos, S. A., Pina, D. S., Cirne, L. G. A., Rodrigues, C. S., Silva, W. P., Lima, V. G. O., Tosto, M. S. L., & Carvalho, G. G. P. de. (2021). Protected or unprotected fat addition for feedlot lambs: feeding behavior, carcass traits, and meat quality. Animals, 11(2), 328. doi:10.3390/ani11020328
CrossrefPubMedPMCGoogle Scholar

Allen, M. S. (2020). Review: control of feed intake by hepatic oxidation in ruminant animals: integration of homeostasis and homeorhesis. Animal, 14(S1), s55-s64. doi:10.1017/s1751731119003215
CrossrefPubMedGoogle Scholar

Buchko, O., Havryliak, V., Yaremkevych, O., Pryimych, V., & Tkachuk, V. (2024). The effect of nettle extract on antioxidant defense system in piglets after weaning. Studia Biologica, 18(1), 31-42. doi:10.30970/sbi.1801.756
CrossrefGoogle Scholar

Burezq, H., & Khalil, F. (2022). Multifarious feed additives on lamb performance on Kuwait farms. Veterinary World, 15(12), 2785-2794. doi:10.14202/vetworld.2022.2785-2794
CrossrefPubMedPMCGoogle Scholar

Coderch, L., Méndez, S., Barba, C., Pons, R., Martí, M., & Parra, J. L. (2008). Lamellar rearrangement of internal lipids from human hair. Chemistry and Physics of Lipids, 155(1), 1-6. doi:10.1016/j.chemphyslip.2008.05.175
CrossrefPubMedGoogle Scholar

Coderch, L., Oliver, M. A., Martínez, V., Manich, A. M., Rubio, L., & Martí, M. (2017). Exogenous and endogenous lipids of human hair. Skin Research & Technology, 23(4), 479-485. doi:10.1111/srt.12359
CrossrefPubMedGoogle Scholar

Coderch, L., Alonso, C., García, M.T., Pérez, L., & Martí, M. (2023). Hair lipid structure: effect of surfactants. Cosmetics, 10(4), 107. doi:10.3390/cosmetics10040107
CrossrefGoogle Scholar

Coleman, D. N., Murphy, K. D., & Relling, A. E. (2018). Prepartum fatty acid supplementation in sheep. II. Supplementation of eicosapentaenoic acid and docosahexaenoic acid during late gestation alters the fatty acid profile of plasma, colostrum, milk and adipose tissue, and increases lipogenic gene expression of adipose tissue. Journal of Animal Science, 96(3), 1181-1204. doi:10.1093/jas/skx013
CrossrefPubMedPMCGoogle Scholar

Costa, T. S. A. da, Silva, J. A. R. da, Faturi, C., Silva, A. G. M. e, do Rêgo, A. C., Monteiro, E. M. M., Budel, J. C. de C., Castro, V. C. G. de, Barbosa, A. V. C., Silva, W. C. da, & Lourenço-Junior, J. de B. (2023). Evaluation of the quality of meat and carcasses from sheep fed diets containing three types of oils. Frontiers in Veterinary Science, 10, 1103516. doi:10.3389/fvets.2023.1103516
CrossrefPubMedPMCGoogle Scholar

Csuka, D. A., Csuka, E. A., Juhász, M. L. W., Sharma, A. N., & Mesinkovska, N. A. (2022). A systematic review on the lipid composition of human hair. International Journal of Dermatology, 62(3), 404-415. doi:10.1111/ijd.16109
CrossrefPubMedGoogle Scholar

de Lima, J. A. M., Bezerra, L. R., Feitosa, T. J. de O., Oliveira, J. R., de Oliveira, D. L. V., Mazzetto, S. E., Cavalcanti, M. T., Pereira Filho, J. M., Oliveira, R. L., de Oliveira, J. P. F., & da Silva, A. L. (2023). Production, characterization, and dietary supplementation effect of rumen-protected fat on ruminal function and blood parameters of sheep. Tropical Animal Health and Production, 55(3), 142. doi:10.1007/s11250-023-03563-x
CrossrefPubMedGoogle Scholar

der Poel, A. F. B. van, Abdollahi, M. R., Cheng, H., Colovic, R., den Hartog, L. A., Miladinovic, D., Page, G., Sijssens, K., Smillie, J. F., Thomas, M., Wang, W., Yu, P., & Hendriks, W. H. (2020). Future directions of animal feed technology research to meet the challenges of a changing world. Animal Feed Science and Technology, 270, 114692. doi:10.1016/j.anifeedsci.2020.114692
CrossrefGoogle Scholar

Doyle, E. K., Preston, J. W. V., McGregor, B. A., & Hynd, P. I. (2021). The science behind the wool industry. The importance and value of wool production from sheep. Animal Frontiers, 11(2), 15-23. doi:10.1093/af/vfab005
CrossrefPubMedPMCGoogle Scholar

Fandrei, F., Engberg, O., Opálka, L., Jančálková, P., Pullmannová, P., Steinhart, M., Kováčik, A., Vávrová, K., & Huster, D. (2022). Cholesterol sulfate fluidizes the sterol fraction of the stratum corneum lipid phase and increases its permeability. Journal of Lipid Research, 63(3), 100177. doi:10.1016/j.jlr.2022.100177
CrossrefPubMedPMCGoogle Scholar

Fernandes, C., Medronho, B., Alves, L., & Rasteiro, M. G. (2023). On hair care physicochemistry: from structure and degradation to novel biobased conditioning agents. Polymers, 15(3), 608. doi:10.3390/polym15030608
CrossrefPubMedPMCGoogle Scholar

Gaffield, K. N., Boler, D. D., Dilger, R. N., Dilger, A. C., & Harsh, B. N. (2022). Effects of feeding high oleic soybean oil to growing-finishing pigs on growth performance and carcass characteristics. Journal of Animal Science, 100(3), skac071. doi:10.1093/jas/skac071
CrossrefPubMedPMCGoogle Scholar

Ghermezgoli, Z. M., Moghaddam, M. K., & Moezzi, M. (2020). Chemical, morphological and structural characteristics of crossbred wool fibers. The Journal of The Textile Institute, 111(5), 709-717. doi:10.1080/00405000.2019.1660459
CrossrefGoogle Scholar

Habe, T., Tanji, N., Inoue, S., Okamoto, M., Tokunaga, S., & Tanamachi, H. (2011). ToF-SIMS characterization of the lipid layer on the hair surface. I: the damage caused by chemical treatments and UV radiation. Surface and Interface Analysis, 43, 410-412. doi:10.1002/sia.3407
CrossrefGoogle Scholar

Haddad, S. G., & Younis, H. M. (2004). The effect of adding ruminally protected fat in fattening diets on nutrient intake, digestibility and growth performance of Awassi lambs. Animal Feed Science and Technology, 113(1-4), 61-69. doi:10.1016/j.anifeedsci.2003.10.015
CrossrefGoogle Scholar

Havryliak, V. V., & Tkachuk. V. M. (2012). Fatty acid composition of structural lipids of normal and abnormal wool fibres. The Ukrainian Biochemical Journal, 84(5), 106-111. (In Ukrainian)
PubMedGoogle Scholar

Jia, J., Liang, C., Wu, X., Xiong, L., Bao, P., Chen, Q., & Yan, P. (2021). Effect of high proportion concentrate dietary on Ashdan Yak jejunal barrier and microbial function in cold season. Research in Veterinary Science, 140, 259-267. doi:10.1016/j.rvsc.2021.09.010
CrossrefPubMedGoogle Scholar

Jose, S., Thomas, S., & Basu, G. (Eds.). (2023). The wool handbook: morphology, structure, properties, processing, and applications. Amsterdam, The Netherlands: ElsevierInc.
Google Scholar

Khan, M. J., Abbas, A., Ayaz, M., Naeem, M., Akhter, M. S., & Soomro, M. H. (2012). Factors affecting wool quality and quantity in sheep. African Journal of Biotechnology, 11(73), 13761-13766. doi:10.5897/ajbx11.064
CrossrefGoogle Scholar

Li, Q., Xu, G., Yang, D., Tu, Y., Zhang, J., Ma, T., & Diao, Q. (2024). Effects of feed ingredients with different protein-to-fat ratios on growth, slaughter performance and fat deposition of small-tail han lambs. Animals, 14(6), 859. doi:10.3390/ani14060859
CrossrefPubMedPMCGoogle Scholar

Marsh, J. B., & Weinstein, D. B. (1966). Simple charring method for determination of lipids. Journal of Lipid Research, 7(4), 574-576. doi:10.1016/s0022-2275(20)39274-9
CrossrefPubMedGoogle Scholar

Meale, S. J., Chaves, A. V., He, M. L., Guan, L. L., & McAllister, T. A. (2015). Effects of various dietary lipid additives on lamb performance, carcass characteristics, adipose tissue fatty acid composition, and wool characteristics. Journal of Animal Science, 93(6), 3110-3120. doi:10.2527/jas.2014-8437
CrossrefPubMedGoogle Scholar

Nagase, S. (2019). Hair structures affecting hair appearance. Cosmetics, 6(3), 43. doi:10.3390/cosmetics6030043
CrossrefGoogle Scholar

Robbins, C. (2009). The cell membrane complex: three related but different cellular cohesion components of mammalian hair fibers. Journal of Cosmetic Science, 60(4), 437-465.
PubMedGoogle Scholar

Ross, A. B., Maes, E., Lee, E. J., Homewood, I., Marsh, J. M., Davis, S. L., & Willicut, R. J. (2022). UV and visible light exposure to hair leads to widespread changes in the hair lipidome. Intertational Journal of Cosmetic Science, 44(6), 672-684. doi:10.1111/ics.12810
CrossrefPubMedPMCGoogle Scholar

Salami, S. A., Luciano, G., O'Grady, M. N., Biondi, L., Newbold, C. J., Kerry, J. P., & Priolo, A. (2019). Sustainability of feeding plant by-products: a review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37-55. doi:10.1016/j.anifeedsci.2019.02.006
CrossrefGoogle Scholar

Strott, C. A., & Higashi, Y. (2003). Cholesterol sulfate in human physiology: what's it all about? Journal of Lipid Research, 44(7), 1268-1278. doi:10.1194/jlr.r300005-jlr200
CrossrefPubMedGoogle Scholar

Tkachuk, V. M., Havrylyak, V. V., Stapay, P. V., & Sedilo, H. M. (2014). Internal lipids of felted, yellowed and pathologically thin wool. The Ukrainian Biochemical Journal, 86(1), 131-138. doi:10.15407/ubj86.01.131
CrossrefPubMedGoogle Scholar

Tkachuk, V. M., Stapay, P. V., Ohorodnyk, N. Z., & Motko, N. R. (2024). Internal lipids and their fatty acids composition in a sheep wool fiber under biodestruction with fleece microorganisms. The Ukrainian Biochemical Journal, 96(3), 97-107. doi:10.15407/ubj96.03.097
CrossrefGoogle Scholar

Tokunaga, S., Tanamachi, H., & Ishikawa, K. (2019). Degradation of hair surface: importance of 18-MEA and epicuticle. Cosmetics, 6(2), 31. doi:10.3390/cosmetics6020031
CrossrefGoogle Scholar

Vlizlo, V. V. (Ed.). (2012). Laboratorni metody doslidzhen u biolohiyi, tvarynnytstvi ta veterynarniy medytsyni [Laboratory methods of research in biology, animal husbandry and veterinary medicine]. Lviv: Spolom. (In Ukrainian)
Google Scholar

Wertz, P. W., & Downing, D. T. (1988). Integral lipids of human hair. Lipids, 23(9), 878-881. doi:10.1007/bf02536208
CrossrefPubMedGoogle Scholar

Wertz, P. W., & Downing, D. T. (1989). Integral lipids of mammalian hair. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 92(4), 759-761. doi:10.1016/0305-0491(89)90264-2
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Vitalii Tkachuk, Bogdan Kyryliv, Nataliia Ohorodnyk, Nataliia Motko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.