On certain classes of series in systems of functions
Анотація
Let $f(z)=z^p-\sum_{k=1}^{\infty}f_k z^{k+p}$ with $f_k>0$ be an entire transcendental function and $(\lambda_n)$ be a sequence of positive numbers increasing to $+\infty$. Suppose that the series $A(z)=\sum_{n=1}^{\infty}a_nf(\lambda_n z)$ with $a_n>0$ regularly converges in ${\mathbb D}=\{z:\,|z|<1\}$. For $p\in {\mathbb N}$, $\alpha\ge 0$ and $0\le\beta<p$ by $\mathfrak{F}_p(\alpha,\beta)$ denote the class of an analytic in ${\mathbb D}$ functions $g(z)=z^p-\sum\limits_{n=1}^{\infty}g_n z^{n+p}$ with $g_n> 0$ such that $\text{Re}\left\{(1-\alpha)\dfrac{g(z)}{z^p}+\alpha\dfrac{g'(z)}{pz^{p-1}}\right\}>\dfrac{\beta}{p}$ for all $z\in \mathbb D$, and say that $g\in \mathfrak{G}_p(\alpha,\beta)$ if $\text{Re}\left\{(p+\alpha(1-p))\dfrac{g'(z)}{pz^{p-1}}+\alpha\dfrac{g''(z)}{pz^{p-2}}\right\}>\beta$ for all $z\in \mathbb D$.
Conditions under which the function $A$ belongs either to $\mathfrak{F}_p(\alpha,\beta)$ or to $\mathfrak{G}_p(\alpha,\beta)$ are investigated.
Повний текст:
PDF (English)Посилання
Lee S.K., Owa S., Srivastava H.M. Basic properties and characterization of a certain class of analytic functions with negative coefficients, Utilitas Math., 36 (1989), 121--128.
Aouf M.K., Darwish H.E. Basic properties and characterization of a certain class of analytic functions with negative coefficients, II, Utilitas Math., 36 (1994), 167--177.
Aouf M.K. A subclass of analytic $p$-valent functions with negative coefficients, I, Utilitas Math., 46 (1994), 219-231.
Altintas O. A subclass of analytic functions with negative coefficients, Hacettepe, Bull. Natur. Sci. Engrg., 19 (1990), 15--24.
Altintas O. On a subclass of certain starlike functions with negative coefficients, Math. Japon., 36 (1991), 489--495.
Aouf M.K., Srivastava H.M. Certain families of analytic functions with negative coefficients, DMS-669-IR, June 1994, 49 p.
Aouf M.K., Hossen H.M., Srivastava H.M. A certain subclass of analytic $p$-valent functions with negative coefficients, Demonstratio Mathematica, 51 (1998), No 3, 595--608.
Sheremeta M.M. On certain subclass of Dirichlet series absolutely convergent in half-plane, Mat.Stud., 57 (2022), No 1, 32--44.
Vinnitskii B.V. Representation of functions by series $sumlimits_{n=1}^{+infty}d_nf(lambda_nz)$, Ukr. Math. J., 31 (1979), No 5, 198-–204. https://doi.org/10.1007/BF01089018
Vinnitskii B.V. Representation of analytic functions by series $sumlimits_{n=1}^{+infty}d_nf(lambda_nz)$, Ukr. Math. J., 31 (1979), No 11, 501–506. https://doi.org/10.1007/BF01092529
Vinnitskii B.V. Completeness of the system ${f(lambda_nz)}$}, Ukr. Math. J., 36 (1984), No 9, 493-–495. https://doi.org/10.1007/BF01086778
Vinnitskii B.V. Effective expansion of analytic functions in series in generalized systems of exponents, Ukr. Math. J., 41 (1989), No 3, 269--273. https://doi.org/10.1007/BF01060309
Sheremeta M.M. On regularly converging series of systems of functions in a disk, Visnyk Lviv Univ. Ser. Mech.-Math., 94 (2022), 89--97.
Sheremeta M.M. Spaces of series in system of functions, Mat. Stud., 59 (2023), No 1, 46--59. https://doi.org/10.30970/ms.59.1.46-59
Sheremeta M.M. Hadamard composition of series in systems of functions, Bukovyn. Mat. Zh., 11 (2023), No 1, 39--51.
Sheremeta M.M. On the geometric properties of series in systems of functions, Nonlinear Oscillations, 27 (2024), No 1, 141--148.
Sheremeta M. M., Gal’ Yu. M. On some properties of the maximal term of series in systems of functions, Mat. Stud., 62 (2024), No 1, 46--53. https://doi.org/10.30970/ms.62.1.46-53
Skaskiv O.B., Trusevych O.M. Relations of Borel type for generalizations of exponential series, Ukr. Math. J., 53, (2001), No 11, 1926--–1931. https://doi.org/10.1023/A:1015219417195
Skaskiv O.B. Rate of convergence of positive series, Ukr. Math. J., 56 (2004), No 12, 1665--1674. https://umj.imath.kiev.ua/index.php/umj/article/view/3873/4464.
Sheremeta M.M., Fedynyak S.I. On the derivative of Dirichlet series, Sibirsk. Mat. Journ., 39 (1998), No 1, 206--223 (in Russian).
Посилання
- Поки немає зовнішніх посилань.
