On the semigroup of all monoid endomorphisms of the semigroup Bω  with the  two-elements family ℱ of inductive nonempty subsets of ω

Oleg Gutik, Inna Pozdniakova

Анотація


We study the structure of the semigroup End(Bω) of all monoid endomorphisms of  Bω, where an $ω-closed family ℱ consists of two nonempty inductive subsets of ω. We describe elements of End(Bω), the multiplication and Green's relations on the semigroup End(Bω).

Повний текст:

PDF (English)

Посилання


A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

O. Gutik and O. Lysetska, On the semigroup BFω which is generated by the family F of atomic subsets of ω, Visn. L’viv. Univ., Ser. Mekh.-Mat. 92 (2021), 34-50. DOI: 10.30970/vmm.2021.92.034-050.

O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk L’viv. Univ. Ser. Mech.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019.

O. Gutik and M. Mykhalenych, On group congruences on the semigroup B
Fω and its homomorphic retracts in the case when the family F consists of inductive non-empty subsets of ω, Visnyk L’viv. Univ. Ser. Mech.-Mat. 91 (2021), 5-27 (in Ukrainian). DOI: 10.30970/vmm.2021.91.005-027

O. Gutik and M. Mykhalenych, On automorphisms of the semigroup B
Fω in the case when the family F consists of nonempty inductive subsets of ω, Visnyk L’viv. Univ. Ser. Mech.-Mat. 93 (2022), 54-65 (in Ukrainian). DOI: 10.30970/vmm.2022.93.054-065

O. Gutik and O. Popadiuk, On the semigroup BF n ω which is generated by the family F n ofnite bounded intervals of ω, Carpathian Math. Publ. 15 (2023), no. 2, 331-355. DOI: 10.15330/cmp.15.2.331-355

O. Gutik and I. Pozdniakova, On the semigroup of injective monoid endomorphisms of the monoid BFω with the two-elements family F of inductive nonempty subsets of ω, Visnyk L’viv. Univ. Ser. Mech.-Mat. 94 (2022), 32-55. DOI: 10.30970/vmm.2022.94.032-055

O. Gutik and I. Pozdniakova, On the semigroup of non-injective monoid endomorphisms of the semigroup BFω with the two-element family F of inductive nonempty subsets of ω, Visnyk L’viv. Univ. Ser. Mech.-Mat. 95 (2023), 14-27. DOI: 10.30970/vmm.2023.95.014-027

O. Gutik, O. Prokhorenkova, and D. Sekh, On endomorphisms of the bicyclic semigroup and the extended bicyclic semigroup, Visn. L’viv. Univ., Ser. Mekh.-Mat. 92 (2021), 5-16 (in Ukrainian). DOI: 10.30970/vmm.2021.92.005-016

M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientifc, Singapore, 1998. DOI: 10.1142/3645

O. Lysetska, On feebly compact topologies on the semigroup B
F 1ω , Visnyk L’viv. Univ. Ser. Mech.-Mat. 90 (2020), 48-56. DOI: 10.30970/vmm.2020.90.048-056

M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.

O. Popadiuk, On endomorphisms of the inverse semigroup of convex order isomorphisms of a bounded rank which are generated by Rees congruences, Visnyk L’viv. Univ. Ser. Mech.-Mat. 93 (2022), 34-41. DOI: 10.30970/vmm.2022.93.034-041

V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 11191122 (in Russian).




DOI: http://dx.doi.org/10.30970/vmm.2024.96.005-024

Посилання

  • Поки немає зовнішніх посилань.