CONSTRUCTION OF A SMART ENTERPRISE MANAGEMENT SYSTEM USING WEAK SIGNALS
Abstract
An approach to building a smart enterprise management system based on the use of weak signals is proposed. The organization of a smart enterprise consists in the use of cyber-physical production, which ensures precise adjustment to the needs of the consumer and is based on the use of big data. The application of achievements in e-commerce provides an opportunity to increase the competitiveness of the enterprise and make the enterprise successful. Adaptive management of a smart enterprise using weak signals assumes that the weaker the signal is perceived and identified from the surrounding environment, the more time the enterprise has for making and implementing appropriate management decisions. The structure of the smart enterprise management system using weak signals includes levels of data collection and management of executive mechanisms; control and management of technological processes; production management and enterprise management. The study is devoted to the development of software tools for adaptive management of a smart enterprise. For this, the collection, storage and analysis of information about the smart enterprise environment, division into groups and influence signals, construction of a three-level tree of hierarchies, calculation of priority vectors, calculation of the integral signal of the influence of Iv on the smart enterprise by scalar multiplication of the priority vector and detection of weak signals have been implemented. on the basis of which management policy is built. Adaptive management of a smart enterprise is oriented to work in conditions of increasing instability of the external environment and involves the use of weak signals to identify additional chances, increase the margin of flexibility, increase the time resource for the adoption and implementation of appropriate measures against threats. The time sequence of the values of the integrated signals of influence on the smart enterprise has been developed. A matrix of pairwise comparisons was developed and the eigenvector and priority vector were calculated.
Keywords: smart enterprise, adaptive management, short-term forecasting.
Full Text:
PDF (Українська)References
- Andrews T., Curbera F., Dholakia H., Goland Y., Klein J., Leymann F., Weerawarana S. Business process execution language for web services. 2003.
- Гребенович С. О., Сініцина Р. Б. Прогнозування рівнів майбутніх продажів для систем планування ресурсів підприємств / NaUKMA Research Papers. Computer Science, 3, 2020.
- Кулажський В. І., Берестов Д. С., Кульчицький О. С. Криптографічний захист інформаційних ресурсів в ERP-системі. // Збірник наукових праць Центру воєнно-стратегічних досліджень Національного університету оборони України імені Івана Черняховського, (3), 2014. C.50-53.
- Ящишина І. Суть та особливості смарт-підприємств (Nature and features of smart factory) // Наукові записки Національного університету «Острозька академія». Серія «Економіка»: науковий журнал, №11 (39)), 2018. С.14-18.
- Цмоць І. Г., Стрямець С. П., Зербіно Д. Д. Багаторівнева система управління технологічними процесами. // Вісник Хмельницького національного університету. Технічні науки, № 4, 2016. С.139-145.
- Dolmeta A., Mirigaldi M., Martina M., Masera G. Implementation and integration of Keccak accelerator on RISC-V for CRYSTALS-Kyber // In Proceedings of the 20th ACM International Conference on Computing Frontiers, 2023, May. Рp. 381-382.
- Kundu S., Hossain M., Mandal S. (2023). Modeling of silicon microring resonator-based programmable logic device for various arithmetic and logic operation in Z-domain // Optical and Quantum Electronics, № 55(2), P.175.
- Beerepoot I., Di Ciccio, C., Reijers H. A., Rinderle-Ma S., Bandara W., Burattin A., Zerbato F. (2023). The biggest business process management problems to solve before we die // Computers in Industry, 146, 103837.
- Rusch M., Schöggl J. P., Baumgartner R. J. Application of digital technologies for sustainable product management in a circular economy: A review. Business Strategy and the Environment, 32(3), 2023, P.1159-1174.
- Brohet M., Regazzoni F. A Survey on Thwarting Memory Corruption in RISC-V. ACM Computing Surveys, 2023.
- Лутава Я. Л. Підвищення ефективності системи управління підприємством, 2023.
- Рагозін А. Формування системи управління" розумного підприємства", 2023.
- Teslyuk V., Tsmots I., Teslyuk T., Kazymyra I. Methods for the Efficient Energy Management in a Smart Mini Greenhouse. Computers, Materials & Continua, 70(2), 2022.
- Nazarkevych H., Nazarkevych M., Kostiak M., Pavlysko A. Designing an Information System to Create a Product in Terms of Adaptation // Developments in Information and Knowledge Management Systems for Business Applications: Volume 7 (pp. 153-169). Cham: Springer Nature Switzerland, 2023.
- Nazarkevych H., Tsmots I., Nazarkevych M., Oleksiv N., Tysliak A., Faizulin O. Research on the effectiveness of methods adaptive management of the enterprise's goods sales using machine learning methods // 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 2022, November, Pp. 539-542. IEEE.
- Назаркевич М., Назаркевич Г. (2023). Адаптивний метод управління підприємством на основі нейронних мереж. Information Technology: Computer Science, Software Engineering and Cyber Security, (1), 93-99.
DOI: http://dx.doi.org/10.30970/eli.24.6
Refbacks
- There are currently no refbacks.