THE METHOD OF EVALUATING THERMAL PHYSICAL CHARACTERISTICS OF BUILDINGS BASED ON THE INVERSE PROBLEM OF THERMAL CONDUCTIVITY

Oleh Sinkevych, Ihor Olenych, Bohdan Sokolovsky

Abstract


The paper describes the method of calculating the effective thermophysical parameters of the building based on the analysis of changes in external and internal temperatures during the cold period of the year, as well as data on energy consumption during heating. Here, the finite difference method is used to solve a direct problem, which consists in determining the temperature regime in the building, taking into account the relevant thermophysical properties of materials. The paper also offers a numerical scheme for calculating the steps of the method and investigates the influence of thermophysical parameters on the calculated temperature values. Based on the results of the direct problem, the inverse problem of identifying the effective thermal parameters of the building is formulated and solved. To solve this problem, the methods of rough sorting are used to obtain an approximate solution and the quasi-Newton BFGS algorithm is used for its further refinement.

Key words: thermophysical modeling, direct and inverse problems of thermal conductivity, numerical optimization.


Full Text:

PDF

References


  1. Heating behaviour in English homes: an assessment of indirect calculation methods / T. Kane [та ін.] // Energy and buildings. – 2017. – Т. 148. – С. 89–105.
  2. Developing suitable thermal models for domestic buildings with Smart Home equipment / Vanda Dimitriou [та ін.] // Proceedings of the 2014 building simulation and optimization conference, London, 23 черв. 2014 р. – 2014.
  3. Himpe E. Characterisation of the thermal performance of a test house based on dynamic measurements / Eline Himpe, Arnold Janssens // Energy procedia. – 2015. – Т. 78. – С. 3294–3299.
  4. A data analysis technique to estimate the thermal characteristics of a house / Seyed Tabatabaei [та ін.] // Energies. – 2017. – Т. 10, № 9. – С. 1358.
  5. Сінькевич О. О. Оптимізація функціонування інтелектуальних об’єктів з використанням методів машинного навчання : дис. … д-ра філософії в галузі комп. наук : 122 / Сінькевич Олег Олександрович. – Львів, 2023. – 179 с.
  6. REFIT Smart Home dataset [Електронний ресурс] // figshare. – Режим доступу: https://repository.lboro.ac.uk/articles/dataset/REFIT_Smart_Home_dataset/207009.
  7. Finite difference methods in heat transfer, second edition. CRC Press, 2017. – Режим доступу: https://doi.org/10.1201/9781315121475.
  8. Battiti R. BFGS optimization for faster and automated supervised learning / Roberto Battiti, Francesco Masulli // International neural network conference. – Dordrecht, 1990. – С. 757–760. – Режим доступу: https://doi.org/10.1007/978-94-009-0643-3_68.
  9. Sinkevych O. Gas Disaggregation Approach Based on Cluster Analysis / O. Sinkevych, L. Monastyrskii, B. Sokolovskii, Ya. Boyko // Computer Technologies of Printing. – 2019. – Вип.- 41 (1). – C. 23-33.




DOI: http://dx.doi.org/10.30970/eli.23.2

Refbacks

  • There are currently no refbacks.