FIELD-EFFECT TRANSISTOR BASED ON REDUCED GRAPHENE OXIDE
Abstract
Graphene field-effect transistors are recognized as a potential alternative to metal-oxide-semiconductor transistors and can become a new element base in the post-silicon epoch. Increasing the efficiency of graphene electronic devices and simplifying their manufacturing technology are important R&D areas. New technical solutions related to the development of graphene field-effect transistors are proposed in the paper. A reduced graphene oxide (RGO) film was used as the conducting channel of the field-effect transistor. A film-forming suspension of RGO obtained by the chemical reduction of graphene oxide with hydrazine monohydrate was deposited on the silicon substrate with a SiO2 layer and air-dried at room temperature. A comparative analysis of ultraviolet and visible absorbance spectra of the graphene oxide and RGO films on a glass substrate indicates the high degree of graphene nanosheet reduction.
The electrical properties of the field-effect transistor based on RGO were studied in DC and AC modes. The nonlinear character of the ID-VD curves of the obtained field-effect transistor was revealed. A significant influence of electrically active defects in the SiO2 layer on the bipolar electrical conductivity of the RGO film was established based on the analysis of current-voltage characteristics and the dependence of the resistance of the field-effect transistor conductive channel on the gate voltage. An analysis of the switching characteristics revealed sections of linear dependence of the drain current ID on the gate voltage VG with an Ion/Ioff ratio of more than two orders of magnitude. The high sensitivity of the RGO film conductivity near the point of charge neutrality to the local electric field can be used to create photo- and gas-sensitive sensor devices based on the RGO field-effect transistor.
Key words: graphene field-effect transistor, reduced graphene oxide, current-voltage characteristic, switching characteristic.
Full Text:
PDF (Українська)References
- Chakraborty T. Graphene: a nanoscale quantum playing field // Physics in Canada. – 2006. – Vol. 63. – P. 351–354.
- Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A. Two-dimensional gas of massless Dirac fermions in graphene // Nature. – 2005 – Vol 438. – P. 197–200.
- Zhang Y., Tan Y.-W., Stormer H.L., Kim P. Experimental observation of quantum Hall effect and berry’s phase in graphene // Nature. – 2005. – Vol. 438. – P. 201–204.
- Fratini S., Guinea F. Substrate-limited electron dynamics in graphene // Physical Review B. 2008. – Vol. 77. – P. 195415.
- Bolotin K.I., Sikes K.J., Jiang Z., Klima M., Fudenberg G., Hone J., Kim P., Stormer H.L. Ultrahigh electron mobility in suspended graphene // Solid State Communications. – 2008. – Vol. 146. – P. 351.
- Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films // Science. – 2004. – Vol. 306. – P. 666–669.
- Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and graphene oxide: synthesis, properties, and applications // Adv. Mater. – 2010. – Vol. 22. – P. 3906–3924.
- Hähnlein B., Händel B., Pezoldt J., Töpfer H., Granzner R., Schwierz F. Side-gate graphene field-effect transistors with high transconductance // Appl. Phys. Lett. – 2012. – Vol. 101. – P. 093504.
- Moon J.-S. Graphene Field-effect transistor for radio-frequency applications: review // Carbon Letters. – 2012. –Vol. 13. – P. 17–22.
- Xia F., Perebeinos V., Lin Y.-M., Wu Y., Avouris P. The origins and limits of metal-graphene junction resistance // Nature Nanotechnology. – 2011. – Vol. 6, no. 3. – P. 179–184.
- Geim A.K. Graphene: status and prospects // Science. – 2009. – Vol. 324. – P. 1530–1534.
- Shahil K.M.F., Balandin A.A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials // Solid State Commun. – 2012. – Vol. 152. – P. 1331–1340.
- Xia F., Mueller T., Lin Y.-M., Valdes-Garcia A., Avouris P. Ultrafast graphene photodetector // Nature nanotechnology. – 2009. – Vol. 4. – P. 839–843.
- Kim K.S., Zhao Y., Jang H., Lee S.Y., Kim J.M., Kim K.S., Ahn J.-H., Kim P., Choi J.-Y., Hong B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes // Nature. – 2009. – Vol. 457. – P. 706–710.
- Avouris P. Graphene: Electronic and Photonic Properties and Devices // Nano Letters. – 2010. – Vol. 10. – P. 4285–4294.
- Zhan B., Li C., Yang J., Jenkins G., Huang W., Dong X. Graphene field-effect transistor and its application for electronic sensing // Small. – 2014. – Vol. 10. – P. 4042–4065.
- Wu S., He Q., Tan C., Wang Y., Zhang H. Graphene-based electrochemical sensors // Small. – 2013. – Vol. 9. – P. 1160–1172.
- Lone S., Bhardwaj A., Pandit A.K., Gupta S., Mahajan S. A Review of Graphene Nanoribbon Field-Effect Transistor Structures // J. Electron. Mater. – 2021. – Vol. 50. – P. 3169–3186.
- Han M.Y., Ozyilmaz B., Zhang Y., Kim P. Energy band-gap engineering of graphene nanoribbons // Phys. Rev. Lett. – 2007. – Vol. 98. – P. 206805.
- Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E. Controlling the Electronic Structure of Bilayer Graphene // Science. – 2006. – Vol. 313. – P. 951–954.
- McCann E., Abergel D.S.L., Fal’ko V.I. The low-energy electronic band structure of bilayer graphene // Eur. Phys. J. Spec. Top. – 2007. – Vol. 148. – P. 91–103.
- Nagashio K., Yamashita T., Nishimura T., Kita K., Toriumi A. Electrical transport properties of graphene on SiO2 with specific surface structures // J. Appl. Phys. – 2011. – Vol. 110. – P. 024513.
- Imamura G., Saiki K. Modification of graphene/SiO2 interface by UV-irradiation: effect on electrical characteristics // ACS Appl. Mater. Interfaces. – 2015. – Vol. 7. – P. 2439–2443.
- Li D., Müller M.B., Gilje S., Kaner R.B., Wallace G.G. Processable aqueous dispersions of graphene nanosheets // Nat. Nanotechnol. – 2008. – Vol. 3. – P. 101–105.
- Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide // Carbon. – 2007. – Vol. 45. – P. 1558–1565.
- Chua C.K., Pumera M. The reduction of graphene oxide with hydrazine: elucidating its reductive capability based on a reaction-model approach // Chem. Commun. – 2016. – Vol. 52. – P. 72–75.
- Olenych I.B., Aksimentyeva O.I., Monastyrskii L.S., Horbenko Yu.Yu., Partyka M.V. Electrical and photoelectrical properties of reduced graphene oxide – porous silicon nanostructures // Nanoscale Res. Lett. – 2017. – Vol. 12. – P. 272.
- Dovbeshko G.I., Romanyuk V.R., Pidgirnyi D.V., Cherepanov V.V., Andreev E.O., Levin V.M., Kuzhir P.P., Kaplas T., Svirko Y.P. Optical properties of pyrolytic carbon films versus graphite and graphene // Nanoscale Res Lett. – 2015. – Vol. 10. – P. 234.
- Kazi S.N., Badarudin A., Zubir M.N.M., Ming H.N., Misran M., Sadeghinezhad E., Mehrali M., Syuhada N.I. Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets // Nanoscale Res Lett. – 2015. – Vol. 10. – P. 212.
- Hayasaka T., Lin A., Copa V.C., Lopez Jr.L.P., Loberternos R.A., Ballesteros L.I.M., Kubota Y., Liu Y., Salvador A.A., Lin L. An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol // Microsystems & Nanoengineering. – 2020. – Vol. 6. – P. 50.
DOI: http://dx.doi.org/10.30970/eli.21.8
Refbacks
- There are currently no refbacks.