RADIATIVE AND MAGNETICALLY STIMULATED CHANGE OF THE ELECTRICAL PROPERTIES OF THE SіO2-Sі STRUCTURE WITH A HIGH CONTENT OF DISLOCATION COMPLEXES
Abstract
The effect of various types of irradiation and magnetic field on the surface of the semiconductor is a relevant topic, since it is the change in the density of the SS that is responsible for the occurrence of sensitive (sensory) effects associated with dislocations adsorbed particles. The paper examines the effect of X-irradiation on the Si surface with different dislocation density (102 – 105 cm-2). The capacitance–voltage characteristics (CVC) of the Bi-SiO2-Si-Al structure indicate (their maxima) a sufficiently large charge in the dielectric layer of the capacity of this maximum. As the dislocation density increases, the capacitance value in the region of positive voltages decreases, which is associated with a decrease in the spatial charge region (SCR) value, as well as the distribution of the density of surface states in the band gap and their rate of recharging changes. To determine the density of surface states, the ideal (mathematically calculated) structures of Bi-SiO2-Si-Al (MOS) is compared with the real one. It is shown that the maximum concentration of SS is formed in the defect layers of the transition region, in which there are maximum mechanical stresses. The source of such stresses can be dislocations, which contribute to the energy spectrum of the surface. They increase the concentration of surface states in the depicted silicon zone by an order of magnitude. The spectrum becomes more complex with well-defined maxima in the energy range [from -0.1 to +0.4] eV at N ~ 105 cm-2. This is due to the fact that, with low-energy irradiation of barrier structures in silicon oxide, the process of generation of electron-hole pairs occurs. The mobility of electrons in SiO2 is much higher than the mobility of holes. Electrons that do not recombine leave the dielectric, holes (p+) thermalize and fall to levels near the ceiling of the valence band. Thermal excitation of holes causes their capture at the level of tight bonds with a disturbance of equilibrium and the movement of atoms from the local to the free energy minimum. At the same time, the reaction takes place: ≡Si-O-Si≡ + p+→Si++O0-Si≡ it shows the formation of "trivalent" silicon and "non-bridging" oxygen, which lead to the emergence of pseudovacancies, which lead to the accumulation of an additional charge in SiO2 when the silicon structure is irradiated. In this case, the increase in the dislocation density enhances the effect of the radiation-stimulated SS change at the SiO2-Si interface. Under the action of X-irradiation on the surface of Si, there is a rearrangement of existing metastable defects and the formation of new ones, the increase in the density of which is associated with heterogeneity them from the volume semiconductor to the surface. They make a significant contribution to the SS spectrum. Upon irradiation, they can reorganize into more complex complexes with a change in SS.
As a result of aging the structure Bi-SiO2-Si-Al in a magnetic field (MF) (B = 0.17 T) with different dislocation concentrations (terms of 4, 12, 20 days), the SS spectrum changes significantly. At N ≈ 104 – 105 cm-2 becomes monotonous after 20 days. The effect of a magnetic field on silicon does not cause the generation of electrically active defects in the near-surface layers of semiconductor, but promotes the rearrangement of oxygen and hydrogen complexes adsorbed on the surface, which are present on Si. It is they who determine the nature of the change in the SS due to the actions of the MF. Under the action of a magnetic field, a spin-dependent process of breaking chemical bonds in nanoclusters of structural defects (Si-H, Si-OH, -OH) occurs. As a result of breaking chemical bonds, hydrogen ions diffuse across the crystal and passivate acceptor and donor bonds. In addition, the action of MF leads to dynamic polarization of the nuclei of the Si29 isotope atom and polarization of the electron spins in Si to the electron spins of oxygen due to the ultrathin interaction with polarized nuclei. A change in the orientation of the electron spin leads to the breakdown of the chemical bond. The effect of MF detection on non-magnetic materials, which are non-magnetic, is enhanced by prolonged exposure of samples to MF and the presence of defects in the near-surface layers. It is obvious that the presence of a dislocation will strengthen the influence of the MF on the change of the SS at the boundary SiO2-Si.
Key words: silicon, magnetic field, X-irradiation, dislocations.
Full Text:
PDF (Українська)References
- Schäffler F. High-mobility Si and Ge structures. / F. Schäffler // Semicond. Sci. Technol. – 1997. – No. 12. – P. 1515–1549.
- Gueorguiev G.K. Silicon and metal nanotemplates: Size and species dependence of structural and electronic properties / G.K. Gueorguiev, J.M. Pacheco // J. Chem. Phys. – 2003. – No. 119. – P. 10313.
- Kumar V. Nanosilicon / V. Kumar. – Elsevier: Amsterdam, The Netherlands. 2008. – 368 p.
- Gueorguiev G.K. Silicon–metal clusters: Nano-templates for cluster assembled materials / G.K. Gueorguiev, J.M. Pacheco, S. Stafström [et al.] // Thin Solid Film. – 2006. – No. 515. – P. 1192–1196.
- Hu W. An ab initio study on the transport characteristics of Si2C2 clusters / W. Hu, Q. Wang, Q. Zhou, W. Liu [et al.] // Can. J. Phys. – 2020. – No. 98. – P. 11–15.
- Han Y. Searching new structures of ruthenium-doped in small-sized silicon clusters: RuSin (n=3–13) clusters / Y. Han, S. Zhang, Z. Wang [et al.] // Eur. Phys. J. Plus – 2022. – No. 137. – P. 186.
- Koga Y. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors / Y. Koga, T. Kadono, S. Shigematsu [et al.] // Jpn. J. Appl. Phys. – 2018. – No. 57. – P. 061302.
- Aboy M. W and X photoluminescence centers in crystalline Si: Chasing candidates at atomic level through multiscale simulations / M. Aboy, I. Santos, P. Lopez [et al.] // Electron. Mater. – 2018. – No. 47. – P. 5045–5049.
- Watkins G.D. Intrinsic defects in silicon / G.D. Watkins // Mater. Sci. Semicond. Processing. – 2000. – No. 3. – P. 227–235.
- Devine R.A.B. Oxygen gettering and oxide degradation during annealing of Si/SiO2/Si structures. / R.A.B. Devine, W.L. Warren, J.B. Xu [et al.] // J. Appl. Phys. – 1995. – No. 77. – P. 175–186.
- Fleetwood D.M. Total-ionizing-dose effects, border traps, and 1/f noise in emerging MOS technologies / D.M. Fleetwood // IEEE Trans. Nucl. Sci. – 2020. – No. 67. – P. 1216–1240.
- Bodunrin J.O. Current-voltage characteristics of 4 MeV proton-irradiated silicon diodes at room temperature/ J.O. Bodunrin, S.J. Moloi //Silicon. – 2022. – Vol. 14 – P. 10237-10244
- Hamedani A. Primary radiation damage in silicon from the viewpoint of a machine learning interatomic potential / A. Hamedani, J. Byggmästar, F. Djurabekova [et al.] // Phys. Rev. Mater. - 2021. – Vol. 5. – P. 114603.
- Yao P. First-principles calculations of silicon interstitial defects at the amorphous-SiO2/Si interface / P. Yao, Y. Song, X. Zuo // J. Phys. Chem. C. – 2021. – Vol. 125. – P. 15044–15051.
- Makara V.A. Magnetic-field-induced modification of properties of silicon lattice defects / V.A. Makara, L.P. Steblenko, Y.I. Kolchenko [et al.] // Solid State Phenom. – 2005. – Vol. 108–109. – P. 339–344.
- Makara V.A. Formation of the magnetic moments on impurity atoms in silicon crystals and the change of structure-sensitive characteristics caused by magnetic ordering / Makara, V.A., Steblenko, L.P., Plyushchay [et al.] // Metallofiz. Noveishie Tekhnol. – 2011. – Vol. 33. – P. 165–171.
- Adliene D. Low energy X-ray radiation impact on coated Si constructions / D. Adliene, I. Cibulskaite, T. Meškinis // Radiat. Phys. Chem. – 2010. – No. 79. – P. 1031–1038.
- Makara V.A. X-ray and magnetic-field-enhanced change in physical characteristics of silicon crystals / V.A. Makara, L.P. Steblenko, A.N. Krit [et al.] // Solid State Phys. – 2012. – No. 54. – P. 1440–1444.
- Павлик Б. Генерування дислокацій в напівпровідникових кристалах методом пластичної деформації / Б. Павлик, Р. Дідик, Й. Шикоряк [та ін.] // Електроніка та інформаційні технології. – 2012. – Вип. 2. – С. 27–32.
- Павлик Б.В. Перебудова дефектної структури та центрів дислокаційної люмінесценції у приповерхневих шарах p-Si / Б.В. Павлик, М.О. Кушлик, Д.П. Слободзян [та ін.] // Журнал фізичних досліджень. – 2017. – Т. 21, № 1/2. – С. 1601-1 – 1601-8.
- Павлик Б. Мікроскопічні дослідження дефектної структури приповерхневого шару кристалів p-Si / Б. Павлик, Р. Дідик, Й. Шикоряк [та ін.] // Теор. електротехніка. – 2010. – Вип. 61. – С. 164–170.
- Gwin C.W. Model for radiation induced charge trapping and annealing in the oxide lajer of MOS devices / C.W. Gwin // J.Appl.Phys. – 1969. – Vol. 40, Iss. 12. – P. 4886-4892
- Павлик Б.В. Еволюція заряду в діелектрику на межі поділу Bi-Si-Al стимульована дією радіації / Б.В. Павлик, А.С. Грипа, Д.П. Слободзян [та ін.] // Теоретична електротехніка. – 2009. – Вип. 60. – С. 156–162.
- Pavlyk B. Radiation-stimulated changes in the characteristics of surface-barrier Al-Si-Bi structures with different concentrations of dislocations at the crystal surface / B. Pavlyk, M. Kushlyk, D. Slobodzyan [et al.] // Acta mechanica et automatica. – 2018. – Vol.12, No1. – P. 72 – 77.
- Павлик Б.В. Вплив магнетного поля на електрофізичні характеристики поверхнево-бар’єрних структур Bi-Si-Al / Б.В. Павлик, Л.П. Стебленко, О.В. Коплак [та ін.] // Металлофизические новейшие технологии. – 2009. – Т.31, № 9. – С. 1169-1178.
- Zhang X. Effect of magnetic field on the nanohardness of monocrystalline silicon and its mechanism/ X. Zhang, Z.P. Cai // JETP Lett. – 2018. – Vol. 108. – P. 23–29.
- Pavlyk B.V. Magnetically stimulated changes in the electrophysical properties of the near-surface silicon layer / B.V. Pavlyk, D.P. Slobodzyan, R.M. Lys [et al.] // Journal of Physical Studies – 2020. – Vol.24, No.3. – P. 3702-1-3702-5.
- Кулініч О.А. Дослідження приповерхневих шарів кремнію при його окисленні / О.А. Кулініч, М.А. Глауберман // ФХТТ. – 2005. – Т.6, №1. – С. 65-67.
- Макара В.А. Вплив магнітної обробки на мікротвердість та структуру приповерхневих шарів кристалів кремнію / В.А. Макара, М.О. Васильєв, Л.П. Стебленко [та ін.] // ФХТТ. – 2009. – Т.10, №1. – С. 193-198.
DOI: http://dx.doi.org/10.30970/eli.20.8
Refbacks
- There are currently no refbacks.