SIMULATION OF THE TUNNELING CONDUCTIVITY IN REFRACTORY NANOTUBE/DIELECTRIC COMPOSITE SYSTEMS

I. Zhydenko, Halyna Klym

Abstract


An approach to calculating the integral conductivity of a model refractory nanotube/dielectric composite system is considered. The conductivity of a random network of nanotubes formed in a dielectric medium was simulated taking into account the tunneling conductivity between individual nanotubes located in close proximity and taking into account the internal conductivity of the nanotubes. It is established that the “solid core” model can be effectively used to predict the parameters of the manufactured composite, which is an important step towards creating a material with the desired properties. It is shown that the conductivity in the composite system deteriorates at using nanotubes with a larger diameter. This is due to the reduction of the percolation effect for such nanotubes.

Key words: nanocomposite, nanotube, tunneling conductivity, computer simulation.


Full Text:

PDF

References


  1. Qiu S. Solution‐processing of high‐purity semiconducting single‐walled carbon nanotubes for electronics devices / S. Qiu, K. Wu, D. Gao, L. Li, H. Jin, Q. Li // Advanced Materials. – 2019. – Vol. 31(9). – P. 1800750.
  2. Xia F. High-performance carbon nanotube-based transient complementary electronics / F. Xia, T. Xia, L. Xiang, F. Liu, W. Jia, X. Liang, Y. Hu // ACS Applied Materials & Interfaces. – 2022. – Vol. 14(10). – P. 12515-12522.
  3. Zhang S. Emerging Internet of Things driven carbon nanotubes-based devices / S. Zhang, J. Pang, Y. Li, F. Yang, T. Gemming, K. Wang, ...M.H. Rümmeli // Nano Research. – 2022. – P. 1-25.
  4. Jain N. Plethora of Carbon nanotubes applications in various fields–A state-of-the-art-review / N. Jain, E. Gupta, N.J. Kanu // Smart Science. – 2022. – Vol. 10(1). – P. 1-24.
  5. Boschetto G. Graphene and carbon nanotubes for electronics nanopackaging / G. Boschetto, S. Carapezzi, A. Todri-Sanial // IEEE Open Journal of Nanotechnology. – 2021. – Vol. 2. – P. 120-128.
  6. Pang J. Applications of carbon nanotubes in the internet of things era / J. Pang, A. Bachmatiuk, F. Yang, H. Liu, W. Zhou, M.H. Rümmeli, G. Cuniberti // Nano-Micro Letters. – 2021. – Vol. 13(1). – P. 1-15.
  7. Bauhofer W. A review and analysis of electrical percolation in carbon nanotube polymer composites / W. Bauhofer, J.Z. Kovacs // Composites science and technology. – 2009. – Vol. 69(10). – P. 1486-1498.
  8. Zare Y. Simulation of percolation threshold, tunneling distance, and conductivity for carbon nanotube (CNT)-reinforced nanocomposites assuming effective CNT concentration / Y. Zare, K. Y. Rhee // Polymers. – 2020. – Vol. 12(1). – P. 114.
  9. Tarlton T. A stochastic approach towards a predictive model on charge transport properties in carbon nanotube composites / T. Tarlton, J. Brown, B. Beach, P.A. Derosa // Composites Part B: Engineering. – 2016. – Vol. 100. – P. 56-67.
  10. Molotnikov A. Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elements / A. Molotnikov, Y. Estrin, A.V. Dyskin, E. Pasternak, A.J. Kanel-Belov // Engineering fracture mechanics. – 2007. – Vol. 74(8). – P. 1222-1232.
  11. Mun S. C. A new approach to determine rheological percolation of carbon nanotubes in microstructured polymer matrices / S.C. Mun, M. Kim, K. Prakashan, H.J. Jung, Y. Son, O.O. Park // Carbon. – 2014. – Vol. 67. – P. 64-71.
  12. Karbovnyk I. Random nanostructured metallic films for environmental monitoring and optical sensing: experimental and computational studies / I. Karbovnyk, J. Collins, I. Bolesta, A. Stelmashchuk, A. Kolkevych, S. Velupillai, H. Klym, O. Fedyshyn, S. Tymoshuk, I. Kolych // Nanoscale Research Letters. – 2015. – Vol. 10. – P. 151.1-151.5.
  13. Luo D. Effects of the distribution and geometry of carbon nanotubes on the macroscopic stiffness and microscopic stresses of nanocomposites / D. Luo, W.X. Wang, Y. Takao // Composites Science and Technology. – 2007. – Vol. 67(14). – P. 2947-2958.
  14. Wang J. F. Multiscale simulation of mechanical properties and microstructure of CNT-reinforced cement-based composites / J.F. Wang, L.W. Zhang, K. M. Liew // Computer Methods in Applied Mechanics and Engineering. – 2017. – Vol. 319. – P. 393-413.
  15. Marconnet A. M. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials / A.M. Marconnet, M.A. Panzer, K.E. Goodson / Reviews of Modern Physics. – 2013. – P. 85(3). – P. 1295.
  16. Pan J. Influence of agglomeration parameters on carbon nanotube composites / J. Pan, L. Bian // Acta Mechanica. – 2017. – Vol. 228(6). – P. 2207-2217.
  17. Matsuda K. Properties of carbon nanotube complex systems and computer experiments / K. Matsuda, K. Hanami, Y. Maniwa // RIST News. – 2008. P. 3-12.
  18. Hu N. The electrical properties of polymer nanocomposites with carbon nanotube fillers / N. Hu, Z. Masuda, C. Yan, G. Yamamoto // Nanotechnology. – 2008. – Vol. 19(21). – P. 215701.
  19. Grujicic M. A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials / M. Grujicic, G. Cao, W.N. Roy // Journal of materials science. – 2004. – Vol. 39(14). – P. 4441-4449.
  20. Fu X. Comprehensive analysis on the electrical behavior of highly stretchable carbon nanotubes/polymer composite through numerical simulation / X. Fu, A.M. Al-Jumaily, M. Ramos, Y.F. Chen // Journal of Materials Research. – 2018. – Vol. 33(20). – P. 3398-3407.
  21. Büttiker M. Generalized many-channel conductance formula with application to small rings / M. Büttiker, Y. Imry, R. Landauer, S. Pinhas // Phys Rev B. – 1985. – Vol. 31. – P. 6207-6215.
  22. Tamura R. Electronic transport in carbon nanotube junctions / R. Tamura, M. Tsukada // Solid State Commun. – 1997. – Vol. 101(8). – P. 601-605.
  23. Xie S. Mechanical and physical properties on carbon nanotube / S. Xie, W. Li, Z. Pan, B. Chang, L. Sun // Journal of Physics and Chemistry of solids. – 2000. – Vol. 61(7). – P. 1153-1158.
  24. Buldum A. Contact resistance between carbon nanotubes / A. Buldum, J.P. Lu // Phys. Rev. B. - 2001. – Vol. 63. – P. 161403-6.
  25. Hertel T. Deformation of carbon nanotubes by surface van der Waals forces / T. Hertel, R.E. Walkup, P. Avouris Phys. Rev. B. – 1998. – Vol. 58. – P. 13870-3.
  26. Girifalco L.A. Carbon nanotubes, buckyballs, ropes and a universal graphitic potential / L.A. Girifalco, M. Hodak, R.S. Lee // Phys. Rev. B. – 2000. – Vol. 62. – P. 13104.
  27. Simmons J.G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film / J.G. Simmons // J. Appl. Phys. – 1963. – Vol. 34(6). – P. 1793-1803.
  28. Li X. S. An overview of SuperLU: algorithms, implementation, and user interface / X. S. Li // ACM Transactions on Mathematical Software (TOMS) toms. – 2005. – Vol. 31(3). – P. 302-325.
  29. Li X.S. SuperLU users` guide / X.S. Li, J.W. Demmel, J.R. Gilbert, L. Grigori, M. Shao, I. Yamazaki // Lawrence Berkeley National Laboratory, 1999.
  30. Demmel J.W. A supernodal approach to sparse matrix pivoting / J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, J.W.H. Liu // SIAM J. Matrix Analysis and Applications. – 1999. – Vol. 20(3). - P. 720-755.




DOI: http://dx.doi.org/10.30970/eli.19.2

Refbacks

  • There are currently no refbacks.