ION MIGRATION PATHWAYS IN SCHEELITE-TYPE CRYSTALS

Volodymyr Shevchuk, Ihor Kayun

Abstract


A review of the data on computer calculation and stereo-atomic crystals structure analysis applied to AMO4 (A=Ba, Ca, Cd, Pb, Sr, Zn, Eu; M=W, Mo) and solid solutions based on these compounds is presented. Possible migration 3D-paths and migration channels for W or Mo ions in scheelite- and wolframite-type suitable structures of AMO4 were considered on nano-size level. The program package TOPOS for the calculation of the ion migration in real crystals was used. The four factors (structural, partial cationic substitution, temperature, and technological conditions of compound growth technique) as influence methods for change of the possible ion migration path up to formation of continuous the latter were ascertained. Usefulness of proposed approach as a tool for investigation of structural point defects was showed.

Keywords: computer calculation program TOPOS, W/Mo migration, migration channel, AMO4 (A=Ba, Ca, Cd, Pb, Sr, Zn, Eu; M=W, Mo), scheelite, wolframite.


Full Text:

PDF

References


  1. Afif A. Sheelite type Sr1-xBaxWO4 (x = 0.1, 0.2, 0.3) for possible application im solid oxide fuel cell electrolytes / A. Afif, J. Zaini, S. Mohammad, H. Rachman, S. Ericsson, M. Islam, A. KalamAzad // Scientific Reports. – 2019. – 9:9173. – 10 p.
  2. Harris C. Structure, redox and transport of acceptor doped cerium niobates. London, London Imperial Colledge, 2015. – 276 p.
  3. Shevchuk V.N. Electrical charge transfer in complex oxides / V.N. Shevchuk, I.V. Kayun // Acta Phys. Polon. A. – 2010. – vol. 117. – No 11. – pp. 150-154.
  4. Shevchuk V.N. Influence of thermal prehistory on the electrical properties of tungstate crystals / V.N. Shevchuk, I.V. Kayun // Chem. Met. Alloys. – 2011. – Vol. 4. – No ½. – pp. 72-76.
  5. Shevchuk V.N. Thermal prehistory and electrical properties of tungstate crystals / V.N. Shevchuk, I.V. Kayun // Functional Materials. – 2011. – Vol. 18. – No 2. – pp. 165-170.
  6. Shevchuk V.N. Electrotransfer features in complex oxide crystals. Lviv, Ivan Franko National University of Lviv. – 2018. – p. 68. (in Ukrainian).
  7. Groenink J.A. Electrical conductivity and defect chemistry of PbMoO4 and PbWO4 / J.A. Groenink, H. J. Binsma // Sol. State Chem. – 1979. – Vol. 29. – No 2. – pp. 227-236.
  8. Esaka T. Oxide ion conduction in the solid solution based on the scheelite-type oxide PbWO4 / T. Esaka, T. Mina-ai, H. Iwahara // Solid State Ionics. – 1992. – Vol. 52. – No 3-4. – pp. 319-325.
  9. Zhou Y. Charge transport by polyatomic anion diffusion in Sc2(WO4)3 / Y. Zhou, S. Adams, R.P. Rao, D.D. Edwards, A. Neiman, N. Pestereva // Chem. Mater. – 2008. – Vol. 20. – pp. 6335-6345.
  10. Li Y. Ionic conductivity, structure and oxide ion migration pathway in fluorite-based Bi8La10O27 / Y. Li, T.P. Hutchinson, X. Kuang, P.R. Slater, M.R. Johnson, I.R. Evans // Chem. Mater. – 2009. – Vol. 21. – pp. 4661-4668.
  11. Pivak Y.V. Ionic and electronic transport in La2Ti2SiO9–based materials / Y.V. Pivak, V.V. Kharton, E.N. Naumovich, J.R. Frade, F.M.B. Marques // J. Sol. St. Chem. – 2007. – Vol. 180. – pp. 1259-1271.
  12. Rabaa H. Theoretical approach to ionic conductivity in phosphorous oxynitride compounds / H. Rabaa, R. Hoffmann, V.C. Hermandez, J.F. Sauz // J. Solid State Chem. – 2001. – Vol. 161. – No 1. – pp. 73-79.
  13. Payne J.I. The mechanism of oxide ion conductivity in bismuth rhenium oxide Bi28Re2O49 / J.I. Payne, J.D. Farrel, A.M. Linsell, M.R. Johnson, I.R. Evans // Sol. St. Ionics. – 2013. – Vol. 244. – pp. 35-39.
  14. Yashima M. Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ / M. Yashima, N. Sirikanda, T. Ishihara // J. Am. Chem. Soc. – 2010. – Vol. 132. – pp. 2385-2392.
  15. Marrocchelli D. Dislocations in SrTO3: easy to reduce but not so fast for oxygen transport / D. Marrocchelli, L. Sun, B. Yildiz // J. Am. Chem. Soc. – 2015. – Vol. 137. – pp. 4735-4748.
  16. Shevchuk V.N. Computer calculation of cation migration channels in scheelite structure / V.N. Shevchuk, I.V. Kayun // Chem. Met. Alloys. – 2019. – vol. 12. – pp. 61-70.
  17. Filso M.O. Procrystal analysis as a tool for the visualization of ion migration pathways / M.O. Filso, E. Eikeland, B.B. Iversen // AIP Conf. Proc. – 2016. – 1765.020010-1 – 5. – p. 5.
  18. Filso M.O. Visualizing lithium-ion migration pathways in battery materials / M.O. Filso, M.J. Turner, G.V. Gibbs, S. Adams, M.A. Spackman, B.B. Iversen // Chem. Eur. J. – 2013. – Vol. 19. – pp. 15535-15544.
  19. Shevchuk V.N. Migration ways of ions in CaWO4 and BaWO4 crystals with scheelite-type structure / V.N. Shevchuk, I.V. Kayun // Proc. Int. Conf. Oxide Materials for Electronic Engineering – fabrication, properties and applications OMEE-2014, 2014, Lviv, Ukraine, Publ. House of Lviv Politechnic, Lviv. – 2014. – pp. 117-118.
  20. Shevchuk V.N. Analysis of electromigration and structure of AWO4 (A=Ca, Cd, Pb, Zn) crystals using TOPOS program complex / V.N. Shevchuk, I.V. Kayun // Chem. Met. Alloys – 2016. – vol. 9. – pp. 128-124,.
  21. Shevchuk V.N. Analysis of cation migration channels in PbWO4 / V.N. Shevchuk, I.V. Kayun // Proc. X-th Int. Scint and Pract. Conf. Electronics and Informattion Technologies ELIT-2018, Lviv, Ukraine, Ivan Franko National University of Lviv, Lviv. – 2018. – pp. B82-B84,.
  22. Shevchuk V.N. Computer calculation of cation migration channels in scheelite structure / V.N. Shevchuk, I.V. Kayun // Proc. XI-th Int. Scint and Pract. Conf. Electronics and Informattion Technologies ELIT-2019, Lviv, Ukraine, Ivan Franko National University of Lviv, Lviv. – 2019. – pp. 238-241.
  23. Shevchuk V.N. Influence of cation substitution on the ion migration in scheelite-type structure / V.N. Shevchuk, I.V. Kayun // Electronics and information technologies. – 2021. – iss. 16. – pp. 94-103.
  24. Blatov V.A. Multipurpose crystallochemical analysis with the program package TOPOS / V.A. Blatov // IUCrCompCommNewsLetter. – 2006. – vol. 7. – pp. 4-38.
  25. Moreau J.M. Structural characterization of PbWO4 and related new phase Pb7W8O(32-x) / J.M. Moreau, Ph. Galez, J. P. Peigneux, M. V. Korzhik, // J. Alloys and Comp. – 1996. – Vol. 238. – pp. 46–48.
  26. Errandonea D. Determination of the high-pressure crystal structure of BaWO4 and PbWO4 / D. Errandonea, J. Pellicer-Porres, F. J. Manjón, A. Segura, Ch. Ferrer-Roca, R. S. Kumar, O. Tschauner, J. López-Solano, P. Rodríguez-Hernández, S. Radescu, A. Mujica, A. Muñoz, G. Aquilanti, Phys. Rev. B. – 2006. – Vol. 73. – pp. 1-224103-15.
  27. Takai Sh. Neutron diffraction and IR spectroscopy on mechanically alloyed La-substituted PbWO4 / Sh. Takai, T. Nakanishi, K. Oikawa, S. Torii, A. Hoshikawa, T. Kamiyama, T. Esaka. // Sol. St. Ionics. – 2004. – Vol. 170. – pp. 297-304.
  28. Takai Sh. Powder neutron diffraction study of Ln-substituted PbWO4 oxide ion conductors / Sh. Takai, Sh. Touda, K. Oikawa, K. Mori, Sh. Torii, T. Kamiyama, T. Esaka // Sol. St. Ionics. – 2002. – Vol. 148. – pp. 123-133.
  29. Chipaux R. Crystal structure of lead tungstate at 1.4 and 300 K / R. Chipaux, G. Andre, and A. Cousson // J. Alloys and Comp. – 2001. – Vol. 325. – pp. 91–94.
  30. Kegin X. Discovery of stolzite in China and refinement of its crystal structure / X. Kegin, X. Jiyue, D. Yang // Acta Geologica Sinica. – 1995. – Vol. 8. – pp. 111-116.
  31. Cavalcante L.S. Synthesis, characterization, structural refinement and optical absorption behavior of PbWO4 powders / L.S. Cavalcante, J.C. Sczancoski, V.C. Albarici, J.M. E. Matos, Varela, E. Longo // Mater. Sci. Eng. – 2008. – Vol. B 150. – pp. 18-25.
  32. Saraf R. Facile synthesis of PbWO4: Applications in photoluminescence and photocatalytic degradation of organic dyes under visible light / R. Saraf, C. Shivakumara, S. Behera, H. Nagabhushana, N. Dhananjaya // Spectrochim. Acta Part A: Molec. Biomolec. Spectrosc. – 2015. – Vol. 136. – pp. 348-355.
  33. Grzechnik A. High-pressure x-ray and neutron powder diffraction study of PbWO4 and BaWO4 scheelites / A. Grzechnik, W. A Crichton, W. G Marshall, K. Friese // J. Phys.: Condens. Matter. – 2006. – Vol. 18. – pp. 3017-3029.
  34. Trots D. M. Low temperature structural variation and heat capacity of stolcite PbWO4 / D. M. Trots, A. Senyshyn, B. C. Shwarz // J. Sol. St. Chem. – 2010. – Vol. 183. – pp. 1245-1251.
  35. Hu W. Cation non-stoichiometry in multi-component oxide nanoparticles by solution chemistry: A case study on CaWO4 for tailored structural properties / W.Hu, W. Tong, L.Li, J.Zheng, G.Li // Phys, Chem. Chem. Phys. – 2011. – Vol, 13. – pp. 11634-11643.
  36. Gonsalves R.F. Rietveld refinement, cluster modelling, growth mechanism and photoluminescence properties of CaWO4:Eu3+ microcrystals / R.F. Gonsalves, L.S. Cavalcante, I.C. Nogueira, E. Longo, M.J. Godinho, J.C. Sczancoski, V.R. Mastelaro, I.M. Pinatti, I.L.V. Rosa, A.P.A. Marques // Cryst. Eng. Comm. – 2015. – Vol. 17. – pp. 1654-1656.
  37. Hazen R.M. High-pressure crystal chemistry of scheelite-type tungstates and molybdates / R.M. Hazen, L.W. Finger, J.W.E. Mariathasan // J. Phys. Chem. Solids. – 1985. – Vol. 46 – pp. 253-263.
  38. Senyshyn A. Thermal structural properties of calcium tungstate / A. Senyshyn, M. Hoelzel, T. Hansen, L. Vasylechko, V. Mikhailik, H. Kraus, H. Ehrenberg, // J. Appl. Crystallogr. – 2011. – Vol. 44. – pp. 319-326.
  39. Taoufyq A. Structural, vibrational and luminescence properties of the (1-x)CaWO4) – xCdWO4 system / A. Taoufyq, F. Guinneton, J-C. Valmalette, M. Arab, A. Benlhachemi, B. Bakiz, S. Villain, A. Lyoussi, G. Nolibe, J-R. Gavarri // J. Sol. State Chem. – 2014. – Vol. 219. – pp. 127-137.
  40. Culver S.P. Low-temperature synthesis of homogeneous solid solutions of scheelite-structured Ca1-xSrxWO4 and Sr1-xBaxWO4 nanocrystals / S.P. Culver, M.J. Greaney, A. Tinoko, R.L. Brutchey // Dalton Transact. – 2015. – Vol. 44. – pp. 15042–15048.
  41. Vilaplana R. Quasi-hydrostatic X-ray powder diffraction study of the low- and high-pressure phases of CaWO4 up to 28 Gpa / R. Vilaplana, R. Lacomba-Perales, O. Gomis, D. Erradonea, Y. Meng // Sol. State Sci. – 2014. – Vol. 36. – pp. 16-23.
  42. Burbank R.D. Absolute integrated intensity measurements: application to CaWO4 and comparison of several refinements / R.D. Burbank // Acta Cryst. – 1965. – Vol. 18. – pp. 88-97.
  43. Cavalcante L.S. Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals / L.S. Cavalcante, V. M. Longo, J.C. Sczancoski, M.A.P. Almeida, A.A. Batista, J.A. Varela, M.O. Orlandi, E. Longo, M. S. Li // Cryst. Eng. Comm. – 2012. – Vol.14. – pp. 853-868.
  44. Bylichkina T.I. Crystal structure of Ba molybdate and Ba tungstate / T.I. Bylichkina, L.I Soleva, E.A. Pobedimskaya, M.A. Porai-Koshits, N.V. Belov // Crystallogr. – 1970. – Vol. 15. – pp. 130-131.
  45. Achary S.N. High temperature crystal chemistry and thermal expansion of synthetic powellite (CaMoO4): a hightemperature X-ray (HT XRD) study / S.N. Achary, S.W. Patwe, M.D. Mathews, A.K. Tyag // J. Phys. Chem Solids. 2006. – Vol. 67. – No 4. – pp. 774-781.
  46. Trots D.M. Crystal structure of ZnWO4 scintillator material in the range of 3-1423 K / D.M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V.B. Mikhailik, H. Kraus // J. Phys.: Condens. Matter. – 2009. – Vol. 21. – pp. 325402 (9 pp.).
  47. Bakiz B. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution / B. Bakiz, A. Hallaoui, A. Taoufyq, A. Benlhachemi, F. Guinneton, S. Villain, M. Ezahri, J.-C. Valmalette, M. Arab, J.-R. Gavarri // J. Sol. St. Chem. – 2018. – vol. 258. – pp. 146-155.
  48. Hallaoui A. Influence of chemical substitution on the fotoluminescence of Sr(1-x)PbxWO4 solid solution / A. Hallaoui, A. Taoufyq, M. Arab, B. Bakiz, A. Benlhachemi, L. Bazzi, S. Villain, J.-C. Valmalette, F. Guinneton, J.-R. Gavarri // J. Sol. St. Chem. – 2015. – vol. 227. – pp. 186-195.
  49. Hallaoui A. Structural vibrational and photoluminescence properties of Sr(1-x)PbxMoO4 solid solution synthesized by solid state reaction / A. Hallaoui, A. Taoufyq, M. Arab, B. Bakiz, A. Benlhachemi, L. Bazzi, J.-C. Valmalette, F. S. Villain, Guinneton, J.-R. Gavarri // Mat. Res. Bull. – 2016. – vol. 79. – pp. 121-132.
  50. Shevchuk V.N. Nano- and micro-size V2O5 structures / V.N. Shevchuk, Yu. N. Usatenko, P.Yu. Demchenko, O.T. Antonyak, R.Ya. Serkiz // Chem. Met. Alloys. – 2011. – Vol. 4. – pp. 67-71.
  51. Shevchuk V. Voronoi tessellation and migration way of ins in crystal / V. Shevchuk, I. Kayun // Proc. Fifth Int. Conf. on Analytic Number Theory and Spatial Tessellation, Kyiv, Ukraine, National Pedagogical Dragomanov University, Kyiv. – 2013. – pp. 83-84.
  52. Shevchuk V.N. Calculation of ion transfer in crystals with scheelite structure / V.N. Shevchuk, I.V. Kayun // Electronics and information technologies. – 2013. – iss. 3. – pp. 185-192. (in Ukrainian).
  53. Modern Crystallography. / B. K. Vainshtein, Ed., vol. 2, Moscow, Nauka, 1979. – p. 359.
  54. Blatov V.A. Voronoi-Dirichlet polyhedra in crystal chemistry: theory and applicaions / V.A. Blatov // Crystallogr. Rev. – 2004. – vol. 10. – pp. 249-318.
  55. Rodriguez Hernandez P. Theoretical and experimental study of CaWO4 and SrWO4 under pressure / P. Rodriguez Hernandez, F.J. Manjon, R.S. Kumar, O. Tschauner, G. Aquilanti, J. Lopez Solano, S. Radescu, A. Mujica, A. Munoz, D. Errandonea, J. Pellicer Porres, A. Segura, C. Ferrer Roca // J. Phys. Chem. Solids/ - 2006. – Vol. 67. – pp. 2164-2171.
  56. Plakhov G.F. The crystal structure of PbWO4 / G.F. Plakhov, E.A. Pobedimskaya, M.A. Simonov, N.V. Belov // Kristallogr. – 1970. – Vol. 15. – pp. 1067-1068.
  57. Asberg Dahlborg M.B. Structural Changes in the System Zn1-xCdxWO4 Determined from Single Crystal Data / M.B. Asberg Dahlborg, G. Svensson // Acta Chem. Scand. – 1999. – Vol. 53. – pp. 1103-1109.
  58. Xu K. Q. Discovery of stolzite in China and refinement of its crystal structure K.Q. Xu, J.Y. Xue, Y. Ding, G.L. Lü // Acta Geol. Sinica Engl. Edit. – 1995. – Vol. 8. – pp. 111-116.
  59. Shivakumara C. Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors: Facile synthesis, structural characterization, photoluminescence, and photocatalytic properties / C. Shivakumara, R. Sarafh, S. Behera, N. Dhananjaya, N. Nagabhushana // Mater. Res. Bull. – 2015. – Vol. 61. – pp. 422-432.
  60. Sadikin Y. Superionic conduction of sodium and lithium in anion-mixed hydroborates Na3BH4B12H12 and (Li0.7Na0.3)3BH4B12H12 / Y. Sadikin, M. Brighi, P. Schouwink, R. Cerny // Adv. Energy Mater. – 2015. – vol. 5. – pp 1501016-1–6.




DOI: http://dx.doi.org/10.30970/eli.19.1

Refbacks

  • There are currently no refbacks.