DATA PROCESSING AND VISUALIZATION FOR CORROSION DETECTION
Abstract
Ukraineis one of the countries through which many gases and oil underground metal elements of constructions pass. Under the influence of external and internal factors, the metal is subject to corrosion and other types of defects. One of the biggest issues is detecting defects in underground metal elements of constructions. The main reason why we should explore the possibility of rapid detection of such problems is the possibility of accidents that can lead to man-made disasters and dangerous emissions into the air and land. It is proposed to use the processing of current and potential measurements to detect corrosion. The approach of development of client-server architecture of the software with visualization of results in the web application is used in Amazon Web Service cloud environment. There is deployed Elasticsearch for data storage. Data processing is automated and will detect corrosion based on visualization of results. The system can replace manual work on data collecting, processing, and visualization in real-time.
Keywords: data processing, data visualization, underground metal elements of constructions, a system for collection data, cloud technologies.
Full Text:
PDFReferences
[1] Lozovan V., Dzhala R., Skrynkovskyy R., Yuzevych V. Detection of specific features in the functioning of a system for the anti-corrosion protection of underground pipelines at oil and gas enterprises using neural networks // Eastern-European Journal of Enterprise Technologies. 2019. Vol. 1. No 5 (97). – P. 20–27. DOI: https://doi.org/10.15587/1729-4061.2019.154999.
[2] Юзевич В. М., Лозован В. П. Вплив механічних напружень на ріст корозійної тріщини у стінці трубопроводу // Фіз.-хім. механіка матеріалів. 2021. Т. 57, № 4. C. 96-103.
[3] Overview of Amazon Web Services. [Online]. URL: https://d1.awsstatic.com/whitepapers/aws-overview.pdf
[4] Running Elasticsearch on AWS. [Online]. URL: https://www.elastic.co/blog/running-elasticsearch-on-aws
[5] Aleksei Voit, Aleksei Stankus, Shamil Magomedov, and Irina Ivanova. Big data processing for full-text search and visualization with elasticsearch // International Journal of Advanced Computer Science and Applications, Vol. 8, No. 12, 2017. DOI: https://doi.org/10.14569/IJACSA.2017.081211
[6] Rogozinski M., Kuc R. ElasticSearch Server. Packt Publishing, Birmingham B3 2PB, UK, 2014.
[7] Thomas, Manoj A. and Redmond, Richard T. From the Client-Server Architecture to the Information Service Architecture, AMCIS 2009 Proceedings. 115.
[8] Stephen R. Midway Principles of Effective Data Visualization. Perspective, Vol. 1 (9), 2020. doi: https://doi.org/10.1016/j.patter.2020.100141
[9] Data visualization [Online]. URL: https://en.wikipedia.org/wiki/Data_visualization
[10] Data-Driven Documents [Online]. URL: https://d3js.org/
[11] Mahdi Bennara, Michael Mrissa, Youssef Amghar. An Approach for Composing RESTful Linked Services on the Web. World Wide Web, Apr 2014, Seoul, South Korea. doi: https://doi.org/10.1145/2567948.2579222
[12] Luburić N, Ivanović D. Comparing Apache Solr and Elasticsearch search servers 6th Int. Conf. Inf. Soc. Technol. ICIST 2016, P. 287–291
[13] R. Pienta, J. Abello, M. Kahng, and D. H. Chau. Scalable graph exploration and visualization: Sensemaking challenges and opportunities Big Data Smart Comput. (BigComp), IEEE, 2015.
[14] R. M. Tarawneh, P. Keller, and A. Ebert. A general introduction to graph visualization techniques // OASIcs-OpenAccess Ser. Informatics, vol. 27, 2012.
[15] В. Гошовський, В. Дзіковський, Р. Мисюк, В. Рабик, І. Сасовець. Система збирання інформації на основі мікрокомп’ютера Raspberry PI // Електроніка та інформаційні технології. 2017. Випуск 8. – С. 102 –110
[16] García, S., Ramírez-Gallego, S., Luengo, J. et al. Big data preprocessing: methods and prospects. Big Data Anal 1, 9 (2016). doi: https://doi.org/10.1186/s41044-016-0014-0
[17] Dashrath Mane, Ketaki Chitnis, Namrata Ojha. The Spring Framework: An Open Source Java Platform for Developing Robust Java Applications // International Journal of Innovative Technology and Exploring Engineering (IJITEE). 2013. Vol. 3 (2). – P. 137-143
[18] Ji Changqing & Li Yu & Qiu Daowen & Jin Yingwei & Xu Yujie & Awada Uchechukwu & Li Keqiu & Qu Wenyu. Big data processing: Big challenges. Journal of Interconnection Networks. 2013. DOI: https://doi.org/10.1142/S0219265912500090.
[19] Dutta, Pranay & Dutta, Prashant. Comparative Study of Cloud Services Offered by Amazon, Microsoft and Google. International Journal of Trend in Scientific Research and Development. 2019. Volume-3. 981-985. doi: https://doi.org/10.31142/ijtsrd23170.
[20] Eric Hehman, Sally Y. Xie. Doing Better Data Visualization. Advances in Methods and Practices in Psychological Science October-December 2021, Vol. 4, No. 4, pp. 1–18. DOI: https://doi.org/10.1177/25152459211045334.
[21] Peng, Dunlu & Cao, Lidong & Xu, Wenjie. Using JSON for Data Exchanging in Web Service Applications. 7. 2011
DOI: http://dx.doi.org/10.30970/eli.16.5
Refbacks
- There are currently no refbacks.