MATHEMATICAL AND SOFTWARE OF LASER CROSS-CORRELATION SPECTROMETER FOR RESEARCH OF NON-SPHERICAL NANO OBJECTS IN BIOLOGICAL LIQUIDS
Abstract
The method of laser correlation spectroscopy is an accurate optoelectronic method for determining the size of nano objects in liquid and gaseous media. Fluctuations in the intensity of laser light scattered by a dispersed system are recorded to construct the size distribution. The International Organization for Standardization has developed standards for measuring the size of nanoparticles in dispersed systems: ISO22412:2017 (Particle size analysis - Dynamic light scattering DLS), ISO13321 (Particle Size Distribution - Photon Correlation Spectroscopy PCS). On the basis of these standardized methods of laser correlation spectroscopy, devices for measuring the size distribution of particles in the nanometer range have been created and produced.
However, attempts to use commercial models of DLS devices for biomedical research encounter a number of problematic moments. The problem with using commercial devices is that their methods of measuring and analyzing data are based on the theory of light scattering by nanoobjects of spherical shape. Biological nanoobjects are characterized by non-spherical shapes: columnar, elliptical, disc-shaped, etc. Measuring the geometric parameters of nonspherical nanoparticles is a more complex task and currently has the nature of research work.
A method of mathematical analysis of polarization components of dynamic light scattering by nanoscale objects of non-spherical shape in suspensions has been developed for a modified scheme of a laser correlation spectrometer. The proposed method of regularization of the inverse spectral problem allows to obtain stable solutions for estimating the shape and aspect ratios of the studied nanoobjects. A specialized measuring and computing device and software for the practical implementation of these instrumental methods have been developed. The measurement system has been tested to study the processes of activation of immune reactions such as antigen-antibody with the formation of aggregate complexes of reactive components. The obtained model characteristics of the size distribution and aspect ratios of the test nanoobjects correlate well with the data of experimental measurements.
Key words: photon correlation spectroscopy, dynamic light scattering, inverse problem, regularization method, nano object, digital signal processor.
Full Text:
PDF (Українська)References
R. Xu. Particle Characterization: Light Scattering Methods. Beckman Coulter Inc., Miami, U.S.A., Kluwer Academic Publishers, 2002. Print ISBN:0-792-36300-0. –397 p.
X. Zhu, J. Shen, and L. Song. Accurate retrieval of bimodal particle size distribution in dynamic light scattering // IEEE Photonics Technol. Lett. 2016. 28(3) – P. 311–314.
A. G. Mailer, P. S. Clegg, and P. N. Pusey. Particle sizing by dynamic light scattering: non-linear cumulant analysis // J. Phys. Condens. Matter. 2015. Vol.27. No 14. –P.145102.
L. Li, L. Yu, K. Yang, W. Li, K. Li, M. Xia. Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm // J. Quant. Spectrosc. Radiat. Transfer. 209 (2018). – P. 91–102.
ISO 22412:2017 Particle size analysis - Dynamic light scattering (DLS). Updates and extends ISO 13321:1996. Particle size analysis - Photon Correlation Spectroscopy (PCS). International Organisation for Standardisation (ISO).
Zetasizer Range [Electronic source]. – Available from: https://www.malvernpanalytical.com/en/products/product-range/zetasizer-range/
Dynamic Light Scattering [Electronic source]. – Available from: https://www.sympatec.com/en/particle-measurement/sensors/dynamic-light-scattering/
Home/Particle Characterization/NanoBrook Series/ [Electronic source]. – Available from: https://www.brookhaveninstruments.com/product/nanobrook-series/
Delsa Nano [Electronic source]. – Available from: https://www.beckman.com/particle-size-analyzers/
Alexander V. Malm & Jason C . W. Corbett. Improved Dynamic Light Scattering using an adaptive and statistically driven time resolved treatment of correlation data. 2019. 9:13519. [Electronic source]. – Available from: https://www.nature.com/articles/s41598-019-50077-4
S. Schintke, E. Frau. Modulated 3D Cross-Correlation Dynamic Light Scattering Applications for Optical Biosensing and Time-Dependent Monitoring of Nanoparticle-Biofluid Interactions // Appl. Sci. 2020, 10(24), 8969. [Electronic source]. – Available from: https://www.mdpi.com/2076-3417/10/24/8969
O. Bilyy, R. Yaremyk, S. Kostyukevych, K. Kostyukevych. Adaptive cross-correlation detector for signals of optoelectronic reflective sensors // Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 2. – P. 170-172. PACS 42.79.
Nepomnyashchaya E., Zabalueva Z., Velichko E., Aksenov E. Modifications of laser correlation spectrometer for investigation of bio-logical fluids // EPJ Web of Conferences. 2017. Vol. 161. – P. 02017.
Zakharov P., Scheffold F. Light Scattering Reviews 4. Springer Praxis Books, 2009. –P.433–467.
Matsuoka H. // Colloid. Surf. A: Physicochem. Eng. Aspects. 1996. Vol. 109. – P. 137-145.
Ortega A., Garcia de la Torre J. Hydrodynamic properties of rodlike and Disklike particles in dilute solitions // J. Chem. Phys. 2003. V.119. – P.9914-9919.
Гетьман В.Б. Обчислювальний метод оптичного визначення розмірів мікрочастинок // Вісн. НУ “Львівська політехніка”. 2001. № 428. – С. 173-179.
Гетьман В.Б. Моделювання та регуляризація задачі визначення розподіду частинок за розмірами в дисперсниз середовищах оптичним методом: дисертація на здобуття наукового ступеня кандидата технічних наук по спеціальності 01.05.02 - математичне моделювання та обчислювальні методи. - Національний університет “Львівська політехніка” , Львів, 2003. – С.71-85.
DOI: http://dx.doi.org/10.30970/eli.15.7
Refbacks
- There are currently no refbacks.