COMPUTER 3D-SIMULATION OF THE HEAT MODE OF THE GEOLOGICAL AND GEOPHYSICAL MEDIUMS

D. Malytsky, Vitaly Fourman

Abstract


Advances in research in recent years have been made possible by advances in hardware and computer-aided data processing, as well as ever-increasing demands for geophysical studies of contaminated Earth. An important aspect is the problem of applied research in the earth sciences, since the issues of structuring the environment are important for practice no less than for fundamental problems, so in many works their fundamental results can be used to solve applied problems. Modern advances in Earth science are based on studies where the main task is to analyze seismic and gravitational data on the structure and dynamics of deep structures, so it would be wrong to bypass the results of the interpretation of the heat flux data, which is directly related to the temperature distribution in the crust and mantle. Despite the direct link, it turns out that interpreting this data is a big problem. The balance or imbalance of the destructive process and seismicity is an additional factor in the long-term prediction of the processes of destruction and seismicity. The real inhomogeneous solid crust of the Earth is quite complex, so the most informative seems to be the use of a regional approach for the analysis of geological structures, rather than individual local areas, and for a global model of the planet it is necessary to take into account the full set of observed structures on Earth. Physical modeling to identify the relationship of tensile strain with increasing breaks and changes in their density during the formation of large breaks testified the relationship between these processes. It is clear that such studies need to be carried out in the future for other blocks of the region in order to obtain a more complete picture of the dependence of the various geophysical fields on the tectonic activity occurring in the Earth's crust. The use of stratigraphic and lithological models only supplements and confirms the relationship described. An important aspect is that this analysis is based only on plausibly known seismic data, which is the basis for obtaining the dependence of the mantle thermal state on the possible variations not only of temperature but also of other thermodynamic characteristics at different points of the Earth's depth structures. Interrelation of tectonic activity with a thermal stream, stratygraphy and lithology of Beregovo district of Transcarpathian is examined. Materials of Geology party of Beregovo and regime geophysical station (RGS) of Beregovo are executed. Three-dimensional models of thermal field, stratigraphic and lithologic ones ware created.

Key words: thermal stream, tectonic activity, design, environment.


References


Фурман В. В., Хом’як М. М. Моделювання теплопереносу та теплової дифузії плинів мантійних плюмів мантії Землі // Електроніка та інформаційні технології. 2012. Вип. 2. – С. 105-110

Фурман В. В. Глобальні моделі сейсмічної томографії у дослідженні верхньої мантії Землі. // Праці НТШ. Том ХХХ. Геологічний збірник. 2012. – С. 19-33

Малицький Д. В, Фурман В. В., Сеньківський В. І Використання сучасних комп'ютерних засобів для 3-D моделювання геологічного і геофізичного середовищ. // Вісник Львівського університету. Серія геологічна. 2008. Вип.22. – С. 85-97.

Russo R. M. et al. Seismic attenuation in the Carpathian bend zone and surroundings // Earth Planet. Sci. Lett. 2005. Vol. 237. – P. 695–709.

Regenauer-Lieb K., Yuen D.A. Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal–mechanical approaches // Earth-Science Reviews. 2003. V. 63. –P. 295–349

Rudge J., et al. A plume model of transient diachronous uplift at the Earth’s surface // Earth Planet. Sci. Lett. 2008. Vol. 267. – P. 146–160.

Ebbing J et al. Forward and inverse modelling of gravity revealing insight into crustal structures of the Eastern Alps // Tectonophysics. 2001. Vol. 337. N 3–s4. – P. 191–208.

Goes S. еt al. Shallow mantle temperatures under Europe from P and S wave tomography // J. Geophys. Res. 2000. Vol.105. – P. 153–169.

Andreescu M., Demetrescu C., Rheological implications of the thermal structure of the lithosphere in the convergence zone of the eastern Carpathians // J. Geodyn. 2001. V. 31. – P.373–391.

Braitenberg C. et al. Inverse modelling of elastic thickness by convolution method - the Eastern Alps as a case example // Earth Planet. Sci. Lett. 2002. Vol. 202. – P. 387–404.

Bercovici D. et al. Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation // Geophys. J. Intern. 2003. V.52. – P. 581–596.

Cloetingh S. et al. Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe // Earth-Science Reviews. 2010. V. 102. – P. 159–206.

Ebbing J. et al. Forward and inverse modelling of gravity revealing insight into crustal structures of the Eastern Alps // Tectonophysics. 2001. Vol. 337. N 3–s4. – P. 191–208.

Максимчук В. Ю., Кузнєцова В. Г., Вербицький Т. З. та ін. // Дослідження сучасної геодинаміки Українських Карпат. К.: Наук. думка, 2005. – 308 c.




DOI: http://dx.doi.org/10.30970/eli.15.5

Refbacks

  • There are currently no refbacks.