ФІЛОГЕНІЯ БІЛКІВ-ЕКСПОРТЕРІВ ГЛІКОПЕПТИДНИХ І ДЕЯКИХ СПОРІДНЕНИХ АНТИБІОТИКІВ

O. Yushchuk, K. Zhukrovska, V. Fedorenko

Анотація


Глікопептидні антибіотики (ГПА) – це група сполук, які продукуються актинобактеріями – Грам-позитивними ґрунтовими бактеріями з Г-Ц-багатими геномами. Серед глікопептидів є ефективні антибіотики, які застосовуються у клініці як «препарати вибору» в боротьбі з мультирезистентними Грам-позитивними патогенами. Нещодавні дослідження показали, що такі пептиди як рамопланін і фегліміцин генетично споріднені з ГПА, незважаючи на значні відмінності в їхній хімічній структурі. Біосинтез ГПА закодований у кластерах біосинтетичних генів (КБГ), які мають багато спільних рис. Однією з них є наявність генів, що кодують АВС-транспортери. Основною функцією цих транспортерів є експортування пептидних антибіотиків із клітин продуцентів. КБГ і в інших актиноміцетів-продуцентів антибіотиків також несуть гени АВС-транспортерів, які відіграють важливу роль у стійкості продуцентів до власних токсичних продуктів. Не менш важливим є і те, що маніпуляції з генами транспортерів є перспективним біотехнологічним знаряддям для збільшення продукції антибіотиків. Обидва цих аспекти вивчені мало для ГПА і споріднених антибіотиків. Доступність значної кількості секвенованих геномів актинобактерій дає змогу зібрати переконливий масив КБГ як відомих, так і потенційних ГПА, а також споріднених із ними антибіотиків. У цій роботі ми поставили за мету проаналізувати in silico особливості розповсюдження, структури та філогенії АВС-транспортерів зі 102 КБГ ГПА та споріднених пептидних антибіотиків. Ми виявили, що АВС-транспортери з КБГ ГПА, фегліміцину і рамопланіну, а також багатьох КБГ невідомих сполук, мають подібну архітектуру й амінокислотні послідовності. Усі вони належать до групи MdlB(MsbA)-подібних АВС-транспортерів і мають N-термінальний трансмембранний домен із шістьма α-спіралями. Реконструкція філогенії цих АВС-транспортерів виявила низку клад, представники кожної з яких походять із КБГ ГПА специфічних типів. Філогенетична реконструкція АВС-транспортерів з КБГ ГПА та споріднених пептидних антибіотиків у контексті АВС-транспортерів, кодованих в КБГ інших груп сполук, підтвердила монофілетичне походження перших.

Ключові слова


кластери біосинтетичних генів; глікопептидні антибіотики; рамопланін; фегліміцин; АВС-транспортери

Повний текст:

PDF

Посилання


Andreo-Vidal A., Binda E., Fedorenko V. et al. Genomic insights into the distribution and phylogeny of glycopeptide resistance determinants within the actinobacteria phylum // Antibiotics. 2021. Vol. 10. P. 1533. https://doi.org/10.3390/antibiotics10121533

Bachmann B. O., Ravel J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from dna sequence data // Meth. Enzymol. 2009. Vol. 458. P. 181-217. https://doi.org/10.1016/S0076-6879(09)04808-3

Blin K., Shaw S., Kloosterman A. M. et al. AntiSMASH 6.0: improving cluster detection and comparison capabilities // Nucleic Acids Res. 2021. Vol. 49. P. W29-W35. https://doi.org/10.1093/nar/gkab335

Butler M. S., Hansford K. A., Blaskovich M. A. et al. Glycopeptide antibiotics: back to the future // J. Antibiot. 2014. Vol. 67. P. 631-644. https://doi.org/10.1038/ja.2014.111

Chiu H. T., Hubbard B. K., Shah A. N. et al. Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster // Proc. Natl. Acad. Sci. U.S.A. 2001. Vol. 98. P. 8548-8553. https://doi.org/10.1073/pnas.151246498

Culp E. J., Waglechner N., Wang W. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling // Nature. 2020. Vol. 578. P. 582-587. https://doi.org/10.1038/s41586-020-1990-9

Donadio S., Sosio M., Stegmann E. et al. Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis // Mol. Genet. Genom. 2005. Vol. 274. P. 40-50. https://doi.org/10.1007/s00438-005-1156-3

Edgar R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput // Nucleic Acids Res. 2004. Vol. 32. P. 1792-1797. https://doi.org/10.1093/nar/gkh340

Gerts E. M., Yu Y. K., Agarwala R. et al. Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST // BMC Biol. 2006. Vol. 4. P. 1-14. https://doi.org/10.1186/1741-7007-4-41

Gonsior M., Mühlenweg A., Tietzmann M. et al. Biosynthesis of the peptide antibiotic feglymycin by a linear nonribosomal peptide synthetase mechanism // ChemBioChem. 2015. Vol. 16. P. 2610-2614. https://doi.org/10.1002/cbic.201500432

Hohl M., Briand C., Grütter M. G., Seeger M. A. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation // Nat. Struct. Mol. Biol. 2012. Vol. 19. P. 395-402. https://doi.org/10.1038/nsmb.2267

Janso J. E., Haltli B. A., Eustáquio A. S. et al. Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica // Tetrahedron. 2014. Vol. 70. P. 4156. https://doi.org/10.1016/j.tet.2014.03.009

Jiang X., Fang Z., Zhang Q. et al. Discovery of a new asymmetric dimer nenestatin B and implications of a dimerizing enzyme in a deep sea actinomycete // Org. Biomol. Chem. 2021. Vol. 19. P. 4243-4247. https://doi.org/10.1039/D1OB00310K

Jovetic S., Zhu Y., Marcone G. L. et al. β-Lactam and glycopeptide antibiotics: first and last line of defense? // Trends in Biotechnol. 2010. Vol. 28. P. 596-604. https://doi.org/10.1016/j.tibtech.2010.09.004

Karow M., Georgopoulos C. The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved fa­mily of ATP‐dependent translocators // Mol. Microbiol. 1993. Vol. 7. P. 69-79. https://doi.org/10.1111/j.1365-2958.1993.tb01098.x

Kearse M., Moir R., Wilson A. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data // Bioinformatics. 2012. Vol. 28. P. 1647-1649. https://doi.org/10.1093/bioinformatics/bts199

Khosa S., Lagedroste M., Smits S. H. J. Protein defense systems against the lantibiotic nisin: function of the immunity protein NisI and the resistance protein NSR // Front. Microbiol. 2016. Vol. 7. P. 504. https://doi.org/10.3389/fmicb.2016.00504

Krogh A., Larsson B., Von Heijne G., Sonnhammer E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes // J. Mol. Biol. 2001. Vol. 305. P. 567-580. https://doi.org/10.1006/jmbi.2000.4315

Kumar S., Stecher G., Li, M., Knyaz C., Tamura K. MEGA X: molecular evolutionary gene­tics analysis across computing platforms // Mol. Biol. Evol. 2018. Vol. 35. P. 1547-1549. https://doi.org/10.1093/molbev/msy096

Le S. Q., Gascuel O. An improved general amino acid replacement matrix // Mol. Biol. Evol. 2008. Vol. 25. P. 1307-1320. https://doi.org/10.1093/molbev/msn067

Marchler-Bauer A., Bryant S. H. CD-Search: protein domain annotations on the fly // Nucleic Acids Res. 2004. Vol. 32. P. 327-331. https://doi.org/10.1093/nar/gkh454

Marcone G. L., Binda E., Berini F., Marinelli F. Old and new glycopeptide antibiotics: from product to gene and back in the post-genomic era // Biotechnol. Adv. 2018. Vol. 36. P. 534-554. https://doi.org/10.1016/j.biotechadv.2018.02.009

Medema M. H., Kottmann R., Yilmaz P. et al. Minimum information about a biosynthetic gene cluster // Nat. Chem. Biol. 2015. Vol. 11. P. 625-631. https://doi.org/10.1038/nchembio.1890

Menges R., Muth G., Wohlleben W., Stegmann E. The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin // Appl. Microbiol. Biotechnol. 2007. Vol. 77. P. 125-134. https://doi.org/10.1007/s00253-007-1139-x

Miao V., Coëffet-LeGal M. F., Brian P. et al. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry // Microbiology. 2005. Vol. 151. P. 1507-1523. https://doi.org/10.1099/mic.0.27757-0

Mitchell S. J., Verma D., Griswold K. E., Bailey-Kellogg C. Building blocks and blueprints for bacterial autolysins // PLoS Computat. Biol. 2021. Vol. 17. P. e1008889. https://doi.org/10.1371/journal.pcbi.1008889

Nicolaou K. C., Boddy C. N. C., Bräse S., Winssinger N. Chemistry, biology, and medicine of the glycopeptide antibiotics // Angew. Chem. 1999. Vol. 38. P. 2096-2152. https://doi.org/10.1002/(SICI)1521-3773(19990802)38:15<2096::AID-ANIE2096>3.0.CO;2-F

Nishino K., Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli // J. Bacteriol. 2001. Vol. 183. P. 5803-5812. https://doi.org/10.1128/JB.183.20.5803-5812.2001

Schneidman-Duhovny D., Inbar Y., Nussinov R., Wolfson H. J. PatchDock and SymmDock: servers for rigid and symmetric docking // Nucleic Acids Res. 2005. Vol. P. W363. https://doi.org/10.1093/nar/gki481

Spyropoulos I. C., Liakopoulos T. D., Bagos P. G., Hamodrakas S. J. TMRPres2D: high quality visual representation of transmembrane protein models // Bioinformatics. 2004. Vol. 20. P. 3258-3260. https://doi.org/10.1093/bioinformatics/bth358

Waglechner N., McArthur A. G., Wright G. D. Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance // Nat. Microbiol. 2019. Vol. 4. P. 1862-1871. https://doi.org/10.1038/s41564-019-0531-5

Waterhouse A., Bertoni M., Bienert S. et al. SWISS-MODEL: homology modelling of protein structures and complexes // Nucleic Acids Res. 2018. Vol. 46. P. W296-W303. https://doi.org/10.1093/nar/gky427

Westfahl K. M., Merten J. A., Buchaklian A. H., Klug C. S. Functionally important ATP bin­ding and hydrolysis sites in Escherichia coli MsbA // Biochem. 2008. Vol. 47. P. 13878-13886. https://doi.org/10.1021/bi801745u

Yim G., Thaker M. N., Koteva K., Wright G. Glycopeptide antibiotic biosynthesis // J. Antibiot. 2014. Vol. 67. P. 31-41. https://doi.org/10.1038/ja.2013.117

Yushchuk O., Binda E., Marinelli F. Glycopeptide antibiotic resistance genes: distribution and function in the producer actinomycetes // Front. Microbiol. 2020. Vol. 11. P. 1173. https://doi.org/10.3389/fmicb.2020.01173

Yushchuk O., Ostash B., Truman A. W. et al. Teicoplanin biosynthesis: unraveling the interplay of structural, regulatory, and resistance genes // Appl. Microbiol. Biotechnol. 2020. Vol. 104. P. 3279-3291. doi.org/10.1007/s00253-020-10436-y




DOI: http://dx.doi.org/10.30970/vlubs.2022.86.03

Посилання

  • Поки немає зовнішніх посилань.