РОЗЛАДИ АУТИСТИЧНОГО СПЕКТРУ: ГЕНЕТИЧНІ Й ЕПІГЕНЕТИЧНІ АСПЕКТИ

O. Lanovenko

Анотація


Розлади аутистичного спектру (РАС) – це хвороби складної взаємодії між спадковістю і середовищем з оцінками успадковуваності від 40 до 80 %, етіологія яких є мультигенною і гетерогенною (люди з подібними патогенетичними варіантами мають різко відмінні фенотипи). Генетичні й епігенетичні фактори розвитку відіграють ключову роль у виникненні патології; серед них найважливішими є варіації кількості копій генів (CNV), однонуклеотидні поліморфізми (SNР), епігенетичні модулятори. У людей з аутизмом ідентифіковано різні варіанти кількості копій генів, що пояснює гетерогенну генетичну архітектуру розладів. Короткі однонуклеотидні поліморфізми ідентифіковано в генах нейрональних рецепторів і білків детоксикації клітин, метаболізму нейротрансмітерів і метаболітів, зокрема, метаболічних ланцюгів метилювання й трансульфурації. Незважаючи на виявлення близько 800 генів ризику РАС, жоден із них не є причиною більше 1 % усіх випадків патології. Серед щойно виявлених 215 генів-кандидатів 19,5 % є епігенетичними регуляторами. У процесі формування розладів аутистичного спектру епігенетичній трансформації піддаються ядерні та цитоплазматичні механізми регуляції генної активності: ремоделювання хроматину, транскрипція, метилювання ДНК у промоторній ділянці, альтернативний сплайсинг мРНК, регуляція трансляції, посттранскрипційна регуляція за допомогою мікроРНК, убіквітинування, деградація білків протеасомами. Мутантні білки, кодовані генами-кандидатами РАС, порушують проліферацію клітин, синаптичну архітектуру і правильну синаптичну функцію. Найчастіше у людей із аутизмом наявні спадкові зміни з неповною пенетрантністю, перемінною експресивністю або з тим та іншим одночасно. Найбільш вивченими середовищними факторами ризику, що потенційно сприяють виникненню РАС у потомства, є: вік подружжя (особливо батька), фактори перинатального ризику, порушення метаболізму вітамінів (зокрема, вітаміну D) і мікроелементів (цинку, хрому, магнію), ожиріння та цукровий діабет матері. У сечі дітей з аутизмом суттєво підвищений вміст дофаміну, а в кишечнику порушена нормальна мікрофлора внаслідок заміни корисних пробіотиків бактеріями Clostridia. Враховуючи складність етіології аутизму та зростаючу поширеність нових підтверджених випадків РАС у всьому світі, необхідно здійснювати пошук ефективних методів діагностики та виявляти головні фактори ризику виникнення патології.

Ключові слова


розлади аутистичного спектру; генетика; епігенетика

Повний текст:

PDF

Посилання


Bacchelli E., Loi E., Cameli C. et al. Analysis of a Sardinian Multiplex Family with Autism Spectrum Disorder Points to Post-Synaptic Density Gene Variants and Identifies CAPG as a Functionally Relevant Candidate Gene // J. Clin. Med. 2019. Vol. 8. P. 212. https://doi.org/10.3390/jcm8020212

Benvenuto A., Moavero R., Alessandrelli R. et al. Syndromic autism: Causes and pathogenetic pathways // World J. Pediatr. 2009. Vol. 5. P. 169-176. https://doi.org/10.1007/s12519-009-0033-2

Berkel S., Marshall C., Weiss B. et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation // Nat. Genet. 2010. Vol. 42. P. 489-491. https://doi.org/10.1038/ng.589

Buescher A., Cidav Z., Knapp M. et al. Costs of Autism Spectrum Disorders in the United Kingdom and the United States // JAMA Pediatr. 2014. Vol. 168(8). P. 721-728. https://doi.org/10.1001/jamapediatrics.2014.210

Bölte S., Girdler S., Marschik P. B. The contribution of environmental exposure to the etiology of autism spectrum disorder // Cell. Mol. Life Sci. 2019. Vol. 76. P. 1275-1297. https://doi.org/10.1007/s00018-018-2988-4

Casanova E. L, Sharp J. L., Chakraborty H. et al. Genes with high penetrance for syndromic and non-syndromic autism typically function within the nucleus and regulate gene expression // Mol. Autism. 2016. Vol. 7. P. 18. https://doi.org/10.1186/s13229-016-0082-z

Chaste P., Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions // Dialogues Clin. Neurosci. 2012. Vol. 14(3). P. 281-292. https://doi.org/10.31887/DCNS.2012.14.3/pchaste

Chiarotti F., Venerosi A. Epidemiology of autism spectrum disorders: a review of worldwide prevalence estimates since 2014// Brain Sci. 2020. Vol. 10 (5). P. 274. https://doi.org/10.3390/brainsci10050274

Cohen J., Eyu S., Efu Y., Eli X. Synaptic proteins and receptors defects in autism spectrum disorders // Front. Cell. Neurosci. 2014. Vol. 8. P. 276. https://doi.org/10.3389/fncel.2014.00276

Colvert E., Tick B., McEwen F. et al. Heritability of Autism Spectrum Disorder in a UK Population-Based Twin Sample // JAMA Psychiatry. 2015. Vol. 72. P. 415-423. https://doi.org/10.1001/jamapsychiatry.2014.3028

De Rubeis S., He X., Goldberg A. P. et al. Synaptic, transcriptional and chromatin genes disrupted in autism // Nature. 2014. Vol. 515. P. 209-215. https://doi.org/10.1038/nature13772

Duffney L. J, Valdez P., Tremblay M. W. et al. Epigenetics and autism spectrum disorder: a report of an autism case with mutation in H1 linker histone HIST1H1E and literature review // Am. J. Med. Genet.: Neuropsychiatr. Genet. 2018. Vol. 177. P. 426-433. https://doi.org/10.1002/ajmg.b.32631

Fan Y., Tang X., Vitriol E. A. et al. Actin capping protein is required for dendritic spine development and synapse formation // J. Neurosci. 2011. Vol. 31. P. 10228-11033. https://doi.org/10.1523/JNEUROSCI.0115-11.2011

Foldi C. J., Eyles D., McGrath J. J., Burne T. H. J. Advanced paternal age is associated with alterations in discrete behavioural domains and cortical neuroanatomy of C57BL/6J mice // Eur. J. Neurosci. 2010. Vol. 31. P. 556-564. https://doi.org/10.1111/j.1460-9568.2010.07074.x

Elsabbagh M., Mercure E., Hudry K. et al. Infant Neural Sensitivity to Dynamic Eye Gaze Is Associated with Later Emerging Autism // Curr. Biol. 2012. Vol. 22. P. 338-342. https://doi.org/10.1016/j.cub.2011.12.056

Gallagher C., McCarthy F. P., Ryan R. M., Khashan A. S. Maternal Alcohol Consumption during Pregnancy and the Risk of Autism Spectrum Disorders in Offspring: A Retrospective Analysis of the Millennium Cohort Study // J. Autism Dev. Disord. 2018. Vol. 48. P. 3773-3782. https://doi.org/10.1007/s10803-018-3626-6

Gardener H., Spiegelman D., Buka S. L. Perinatal and Neonatal Risk Factors for Autism: A Comprehensive Meta-analysis // Pediatrics. 2011. Vol. 128. P. 344-355. https://doi.org/10.1542/peds.2010-1036

Goyal D. K, Neil J. R, Simmons S. D. et al. Zinc Deficiency in Autism: A Controlled Study // Insights Biomed. 2019. N 4. P. 4-12.

Hagiwara M., Kimura R., Funabiki Y. et al. MicroRNA profiling in adults with high-functioning autism spectrum disorder // Mol. Brain. 2019. Vol. 12. P. 82-84. https://doi.org/10.1186/s13041-019-0508-6

Hu V. W., Devlin C. A., Debski J. J. ASD Phenotype-Genotype Associations in Concordant and Discordant Monozygotic and Dizygotic Twins Stratified by Severity of Autistic Traits // Int. J. Mol. Sci. 2019. Vol. 20. P. 3804. https://doi.org/10.3390/ijms20153804

Janecka M., Mill J., Basson M. A. et al. Advanced paternal age effects in neurodevelopmental disorders. Review of potential underlying mechanisms // Transl. Psychiatry. 2017. N 7. P. 1019. https://doi.org/10.1038/tp.2016.294

Jiang H.-Y., Xu L.-L., Shao L. et al. Maternal infection during pregnancy and risk of autism spectrum disorders: A systematic review and meta-analysis // Brain Behav. Immun. 2016. Vol. 58. P. 165-172. https://doi.org/10.1016/j.bbi.2016.06.005

Kaizuka T., Takumi T. Postsynaptic density proteins and their involvement in neurodevelopmental disorders // J. Biochem. 2018. Vol. 163. P. 447-455. https://doi.org/10.1093/jb/mvy022

Kana R. K., Uddin L. Q., Ekenet T. et al. Brain connectivity in autism // Front. Hum. Neurosci. 2014. N 8. P. 349. https://doi.org/10.3389/fnhum.2014.00349

Kojima M., Yassin W., Owada K. et al. Neuroanatomical Correlates of Advanced Paternal and Maternal Age at Birth in Autism Spectrum Disorder // Cereb. Cortex. 2018. Vol. 29. P. 2524-2532. https://doi.org/10.1093/cercor/bhy122

Kreienkamp H.-J. Scaffolding Proteins at the Postsynaptic Density: Shank as the Architectural Framework // Pharmacol. 2008. Vol. 186. P. 365-380. https://doi.org/10.1007/978-3-540-72843-6_15

Lahbib S., Leblond C. S., Hamza M. et al. Homozygous 2p11.2 deletion supports the implication of ELMOD3 in hearing loss and reveals the potential association of CAPG with ASD/ID etiology // J. Applied Genetics. 2018. Vol. 60. P. 49-56. https://doi.org/10.1007/s13353-018-0472-3

Lai M.-C., Lombardo M. V., Baron-Cohen S. Autism // Lancet. 2014. Vol. 383. P. 896-910. https://doi.org/10.1016/S0140-6736(13)61539-1

Lu Z., Liu Z., Mao W. et al. Locus-specific DNA methylation of Mecp2 promoter leads to autism-like phenotypes in mice // Cell Death Disease. 2020. Vol. 11. P. 85. https://doi.org/10.1038/s41419-020-2290-x

Matos B., Publicover S. J., Castro L. F. C. et al. Brain and testis: more alike than previously thought? // Open biology. 07 June 2021. P. 1-11. https://doi.org/10.1098/rsob.200322

Marshall C. R, Scherer S. W. Detection and characterization of copy number variation in autism spectrum disorder // Methods Mol.Biol. 2012. Vol. 838. P. 115-135. https://doi.org/10.1007/978-1-61779-507-7_5

Mayer Е. А., Tillisch К., Gupta А. Gut/brain axis and the microbiota // J. Clin. Invest. 2015. Vol. 125(3). P. 926-938. https://doi.org/10.1172/JCI76304

Nagarajan R. P., Patzel K. A., Martin M. et al. MECP2 promoter methylation and X chromosome inactivation in autism // Autism Res. 2008. N 1. P. 169-178. https://doi.org/10.1002/aur.24

Napoli E., Russo S., Casula L. et al. Array-CGH Analysis in a Cohort of PhenotypicallyWell-Characterized Individuals with "Essential"Autism Spectrum Disorders // J. Autism Dev. Disord. 2018. Vol. 48. P. 442-449. https://doi.org/10.1007/s10803-017-3329-4

Ozkul Y., Taheri S., Bayram K. K. et al. A heritable profile of six miRNAs in autistic patients and mouse models // Sci. Rep. 2020. Vol. 10. P. 1-14. https://doi.org/10.1038/s41598-020-65847-8

Pizzo L., Jensen M., Polyak A. et al. Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants // Genet. Med. 2019. Vol. 21. P. 816-825. https://doi.org/10.1038/s41436-018-0266-3

Pu Y., Yang J., Chang L. et al. Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase // PNAS. 2020. Vol. 117. N 21. Р. 11753-11759. https://doi.org/10.1073/pnas.1922287117

Rylaarsdam L., Guemez-Gamboa A. Genetic Causes and Modifiers of Autism Spectrum Disorder // Front Cell Neurosci. 2019. Vol. 13. P. 385. https://doi.org/10.3389/fncel.2019.00385

Robea M., Luca A.-C., Ciobica A. Relationship between Vitamin Deficiencies and Co-Occurring Symptoms in Autism Spectrum Disorder // Medicine. 2020. Vol. 56. P. 245-260. https://doi.org/10.3390/medicina56050245

Saghazadeh A., Ahangari N., Hendi K. et al. Status of essential elements in autism spectrum disorder: Systematic review and meta-analysis // Rev. Neurosci. 2017. Vol. 28. P. 783-809. https://doi.org/10.1515/revneuro-2017-0015

Samaco R. C., Hogart A., LaSalle J. M. Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3 // Hum. Mol. Genet. 2005. Vol. 14. P. 483-492. https://doi.org/10.1093/hmg/ddi045

Sandin S., Lichtenstein P., Kuja-Halkola R. et al. The Familial Risk of Autism // JAMA. 2014. Vol. 311. P. 1770-1777. https://doi.org/10.1001/jama.2014.4144

Sanna A., Firinu D., Zavattari P., Valera P. Zinc Status and Autoimmunity: A Systematic Review and Meta-Analysis // Nutrients. 2018. Vol. 10. P. 68. https://doi.org/10.3390/nu10010068

Sampino S., Juszczak G. R., Zacchini F. et al. Grand-paternal age and the development of autism-like symptoms in mice progeny // Transl. Psychiatry. 2014. Vol. 4. P. 386-390. https://doi.org/10.1038/tp.2014.27

Schaaf C. P., Boone P. M., Sampath S. et al. Phenotypic spectrum and genotype-phenotype correlations of NRXN1 exon deletions // Eur. J. Hum. Genet. 2012. Vol. 20. P. 1240-1247. https://doi.org/10.1038/ejhg.2012.95

Shaw W. Elevated urinary glyphosate and Clostridia metabolites with altered dopamine metabolism in triplets with two of the three having an autistic spectrum disorder and the other a suspected seizure disorder: a case study with potential implications to autism // Integrative Medicine: Clinical Journal. 2017. Vol. 16. P. 50-57.

Shih P.-Y., Hsieh B.-Y., Lin M.-H. et al. CTTNBP2 Controls Synaptic Expression of Zinc-Related Autism-Associated Proteins and Regulates Synapse Formation and Autism-like Behaviors // Cell Rep. 2020. Vol. 31. P. 107. https://doi.org/10.1016/j.celrep.2020.107700

Stathopoulos S., Gaujoux R., Lindeque Z. et al. DNA Methylation Associated with Mitochondrial Dysfunction in a South African Autism Spectrum Disorder Cohort // Autism Res. 2020. Vol. 13. P. 1079-1093. https://doi.org/10.1002/aur.2310

Tamouza R., Fernell E., Eriksson M. A. et al. HLA Polymorphism in Regressive and Non-Regressive Autism: A Preliminary Study // Autism Res. 2019. Vol. 13. P. 182-186. https://doi.org/10.1002/aur.2217

Veroniki A. A., Cogo E., Rios P. et al. Comparative safety of anti-epileptic drugs during pregnancy: A systematic review and network meta-analysis of congenital malformations and prenatal outcomes // BMC Med. 2017. Vol. 15. P. 1-20. https://doi.org/10.1186/s12916-017-0845-1

Vyas Y., Lee K., Jung Y., Montgomery J. M. Influence of maternal zinc supplementation on the development of autism-associated behavioural and synaptic deficits in offspring Shank3-knockout mice // Mol. Brain. 2020. Vol. 13. P. 1-18. https://doi.org/10.1186/s13041-020-00650-0

Wan H., Zhang C., Li H. et al. Association of maternal diabetes with autism spectrum disorders in offspring // Medicine. 2018. Vol. 97. P. 138. https://doi.org/10.1097/MD.0000000000009438

Wang Y., Tang S., Xu S. et al. Maternal Body Mass Index and Risk of Autism Spectrum Disorders in Offspring: A Meta-analysis // Sci. Rep. 2016. N 6. Р. 342-348. https://doi.org/10.1038/srep34248

Wang C., Geng H., Liu W., Zhang G. Prenatal, perinatal, and postnatal factors associated with autism // Medicine. 2017. Vol. 96(18). P. 66-76. https://doi.org/10.1097/MD.0000000000006696

Wi'sniowiecka-Kowalnik B., Nowakowska B. A. Genetics and epigenetics of autismspectrumdisorder-Current evidence in the field // J. Appl. Genet. 2019. Vol. 60. P. 37-47. https://doi.org/10.1007/s13353-018-00480-w

Wong C. C. Y, Smith R. G., Hannon E. et al. Genome-wide DNA methylation profiling identifies convergent molecular signatures associated with idiopathic and syndromic autism in post-mortem human brain tissue // Hum. Mol. Genet. 2019. Vol. 28. P. 2201-2211. https://doi.org/10.1093/hmg/ddz052

Waye Mary M., Cheng Ho Yu. Genetics and epigenetics of autism: a review // Psychiatry and Clinical Neurosciences. 2018. Vol. 72. P. 228-244. https://doi.org/10.1111/pcn.12606

Woodbury-Smith M., Scherer S. W. Progress in the genetics of autism spectrum disorder // Dev. Med. Child Neurol. 2018. Vol. 60. P. 445-451. https://doi.org/10.1111/dmcn.13717

Wu S., Wu F., Ding Y. et al. Advanced parental age and autism risk in children: A systematic review and meta-analysis // Acta Psychiatr. Scand. 2016. Vol. 135. P. 29-41. https://doi.org/10.1111/acps.12666

Wu S., Ding Y., Wu F. et al. Family history of autoimmune diseases is associated with an increased risk of autism in children: A systematic review and meta-analysis // Neurosci. Biobehav. Rev. 2015. Vol. 55. P. 322-332. https://doi.org/10.1016/j.neubiorev.2015.05.004

Xu X., Li C., Gao X. et al. Excessive UBE3A dosage impairs retinoic acid signaling and sy­naptic plasticity in autism spectrum disorders // Cell Res. 2018. Vol. 28. P. 48-68. https://doi.org/10.1038/cr.2017.132




DOI: http://dx.doi.org/10.30970/vlubs.2021.85.01

Посилання

  • Поки немає зовнішніх посилань.