Genetic programming for the two-dimensional boundary reconstruction problem
Анотація
Повний текст:
PDF (English)Посилання
Baravdish G. An iterative method for the Cauchy problem for second-order elliptic equations / G. Baravdish, I. Borachok, R. Chapko, B.T. Johansson, M. Slodička // International Journal of Mechanical Sciences. — 2018.— Vol. 142. — P. 216—223.
Cakoni F. Integral equations for inverse problems in corrosion detection from partial Cauchy data / F. Cakoni, R. Kress // Inverse Probl. Imaging. — 2007.— Vol. 1. — P. 229—245.
Chapko R. On the non-linear integral equation approaches for the boundary reconstruction in double-connected planar domains / R. Chapko, O. Ivanyshyn Yaman, T. Kanafotskyi // Journal of Numerical and Applied Mathematics. — 2016.— Vol. 2 (122). — P. 7—20.
Chapko R. On a nonlinear integral equation approach for the surface reconstruction in semi-infinite-layered domains / R. Chapko, O. Ivanyshyn, O. Protsyuk // Inverse Problems in Science and Engineering. — 2013.— Vol. 21. — P. 547—561.
Chapko R. On the use of an integral equation approach for the numerical solution of a Cauchy problem for Laplace equation in a doubly connected planar domain / R. Chapko, B.T. Johansson, Y. Savka // Inverse Problems in Science and Engineering. — 2013.— Vol. 22. — P. 130—149.
Chapko R. On the Non-Linear Integral Equation Approach for an Inverse Boundary Value Problem for the Heat Equation / R. Chapko, L. Mindrinos // Journal of Engineering Mathematics. — 2019.— Vol. 119. — P. 255—268.
Eckel H. Numerical study of an evolutionary algorithm for electrical impedance tomography, Dissertation / H. Eckel. — Göttingen, 2008.
Eckel H. Non-linear integral equations for the complete electrode model in inverse impedance tomography / H. Eckel, R. Kress // Applicable Analysis. — 2008.— Vol. 87. — P. 1267—1288.
Ivanyshyn O. Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle / O. Ivanyshyn, B.T. Johansson // J. Integral Equations Appl. — 2007.— Vol. 19. — P. 289—308.
Ivanyshyn O. Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks / O. Ivanyshyn, R. Kress // J. Integral Equations Appl. — 2006.— Vol. 18. — P. 13—38.
Goldberg D.E. Genetic Algorithm in Search, Optimisation and Machine Learning / D.E. Goldberg. — Addison-Wesley, Reading, MA, 1989.
Holland J.H. Adaptation in Natural and Artificial System / J.H. Holland. — University of Michigan Press, Ann Arbor, 1975.
Kress R. Linear Integral Equations, 2nd. ed. / R. Kress. — Springer-Verlag, Berlin Heidelberg New York, 1999.
Kress R. Nonlinear integral equations and the iterative solution for an inverse boundary value problem / R. Kress, W. Rundell // Inv. Probl. — 2005.— Vol. 21. — P. 1207—1223.
Luke S. Issues in Scaling Genetic Programming: Breeding Strategies, Tree Generation, and Code Bloat / S. Luke. — [Dissertation] University of Maryland, 2000.
McLean W. Strongly Elliptic Systems and Boundary Integral Operators, Cambridge University Press / W. McLean. — Cambridge, 2000.
Mera N.S. On the use of Genetic Algorithms for Solving Ill-Posed Problems / N.S. Mera, L. Elliott, D.B. Ingham // Inverse Problems in Engineering. — 2010.— Vol. 11. — P. 105—121.
Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed. / Z. Michalewicz. — Springer-Verlag, Berlin, 1996.
Pourgholi R. Solving an inverse heat conduction problem using genetic algorithm: Sequential and multi-core parallelization approach / R. Pourgholi, H.L. Dana, S.H. Tabasi // Applied Mathematical Modelling. — 2014.— Vol. 38. — P. 1948—1958.
Shahnazari M.R. Solving inverse heat conduction problems by using Tikhonov regularization in combination with the genetic algorithm / M.R. Shahnazari, A. RoohiShali, A. Saberi // Inv. Probl. — 2021.— Vol. 3. — P. 60—66.
DOI: http://dx.doi.org/10.30970/vam.2023.31.11848
Посилання
- Поки немає зовнішніх посилань.