ON THE BOUNDARY-DOMAIN INTEGRALS APPROCH FOR A PARTIAL INTEGRO-DIFFERENTIAL EQUATION
Анотація
We consider in the simply connected bounded domain the Dirichlet boundary value problem for a partial integro-differential equation, which contains the Laplace differential operator and the integral operator over the domain. The weak and classical solutions of this problem were investigated. The Lax-Milgram theorem was involved for the weak solution and the Riesz-Schauder theory for the classical case. As result the considered problem is reduced to the system of well posed boundary-domain integral equations.
Посилання
begin{thebibliography}{99}
begin{small}
bibitem{BaCa}
Ba~nuelos, R., Carroll, T. Brownian motion and the fundamental frequency of a drum, {em Duke Math. J.}, {bf 75} (1994), 575--602.
bibitem{P3}
Barles, G., Chasseigne, E., Imbert, C.
On the Dirichlet problem for second-order elliptic integro-differential equations, {em Indiana University Mathematics Journal},
{bf 57} (2008), 213--246.
bibitem{P2}
Correa, F.J.S.A., de Assis Lima, N., de Lima, R.N.,
Existence of solutions of integro-differential semilinear elliptic equations, {em Applicable Analysis} (2021), DOI: 10.1080/00036811.2021.2005786.
bibitem{DaLi}
Dautray, R., Lions, J.-L., {em Mathematical Analysis and Numerical Methods for Science and Technology}, Vol.2. Functional and Variational Methods, Springer, 1988.
bibitem{De}
Dehghan, M. Solution of a partial integro-differential equation arising from viscoelasticity, {em International Journal of Computer Mathematics}, {bf 83} (2006), 123--129.
bibitem{Ev}
Evans, L.C., {em Partial Differential Equations}, Second Edition, Springer, 2010.
bibitem{GaMe}
{Garroni M., Menaldi, J.}
{em Second Order Elliptic Integro-Differential Problems}, Chapman & Hall/CRC, 2002.
bibitem{HiNe}
Hirsa, A., Neftci, S.N. {em An Introduction to the Mathematics of Financial
Derivatives}, Academic Press, 2013.
bibitem{Kr}
{Kress, R.},
{em Linear Integral Equations}, Third Edition, Springer, 2013.
bibitem{Pr}
Prudnikov, A.P., Brychkov, Yu. A., Marichev, O. I. {em Integrals and Series: Elementary Functions}, Gordon and Breach Science Publishers, 1986.
bibitem{Sa}
Sadegh Zadeh, K. An integro-partial differential equation for modeling biofluids flow in fractured biomaterials, {em J. Theor. Biol.} {bf 273} (2011), 72--79.
bibitem{Ta}
Taira, K. Boundary value problems for elliptic integro-differential operators, {Math. Z.} {bf 222} (1996), 305--327.
bibitem{P1}
Tsai, L.-Y., On the solvability of integro-differential equations of elliptic type, {em Chinise Journal of Mathematics}
{bf 14} (1986), 163--177.
end{small}
end{thebibliography}
DOI: http://dx.doi.org/10.30970/vam.2022.30.11432
Посилання
- Поки немає зовнішніх посилань.