ON METHODS WITH SUCCESSIVE APPROXIMATION OF THE INVERSE OPERATORFOR NONLINEAR EQUATIONS WITH DECOMPOSITION OF THE OPERATOR
Анотація
Повний текст:
PDF (English)Посилання
[1] Argyros I.K. Convergence and Applications of Newton’s-type Iterations / I.K. Argyros. – New York: Springer-Verlag, 2008. – 506 p.
[2] Argyros I.K. On Ulm’s method for Fréchet differentiable operators / I.K. Argyros // J. Appl. Math. Comput. – 2005. – Vol. 31.– P.97–111.
[3] Argyros I.K. Method of Third-Order Convergence with Approximation of Inverse Operator for Large Scale Systems / I.K. Argyros, S. Shakhno, H.Yarmola // Symmetry. – 2020, 12, 978.
[4] Dennis J.E. Numerical Methods for Unconstrained Optimization and Nonlinear Equations / J.E. Dennis, R.B. Schnabel. – Philadelphia: SIAM, 1996.
[5] Esquerro J.A. An Ulm-type method with R-order of convergence three / J.A. Esquerro, M.A. Hernández // Nonlinear Analysis: Real World Applications. – 2012. – Vol. 12.– 14–26.
[6] Esquerro J.A. A discretization scheme for some conservative problems / J.A. Ezquerro, M.A. Hernńdez, M.A. Salanova // J. Comp. Appl. Math. – 2000. – Vol. 115. – 181-192.
[7] Hernandez M. A. A uniparametric family of iterative processes for solving nondifferentiable operators / M. A. Hernandez, M. J. Rubio // J. Math. Anal. Appl. – 2002. – Vol. 275. – P. 821–834.
[8] Kantorovich L.V. Functional Analysis / L.V. Kantorovich, G.P. Akilov. – Moscow: Nauka, 1977. – 744 p. (In Russian)
[9] Lukan L. Inexact Trust Region Method for Large Sparse Systems of Nonlinear Equations / L. Lukan // Journal of Optimization Theory and Applications. – 1994. – V. 81. – P. 569–590.
[10] Rooze A.F. An iterative method for solving nonlinear equations using parallel inverse operator approximation / A.F. Rooze // Izv. Acad. Nauk Est. SSR. Fiz. Mat. – 1982. – V. 31, № 1. – P. 32-37. (In Russian)
[11] Rooze A.F. An asynchronous iteration method of solving non-linear equations using parallel approximation of an inverse operator / A.F. Rooze // USSR Comput. Math. Math. Phys. – 1986. – V. 26, № 8. – P. 1250–1254.
[12] Shakhno S.M. Combined Newton’s-Potra method for solving nonlinear operator equations / S.M. Shakhno, A.-V.I. Babjak, H.P. Yarmola // Journal of Computational and Applied Mathematics. – 2015. – № 3 (120). – P. 170-178. (In Ukrainian)
[13] Shakhno S.M. Convergence of one iterative method with successive approximation of the inverse operator/ S.M. Shakhno // Visnyk of Lviv. Univ. Ser. mech.-math. Problems of applied mathematics and mechanics. – 1989.– V. 31. – P. 62-66. (In Ukrainian)
[14] Shakhno S.M. On the two-step method for solving nonlinear equations with nondifferentiable operator / S.M. Shakhno, H.P. Yarmola // PAMM – Proc. Appl. Math. Mech. – 2012. – V. 12. – P. 617 – 618. – doi 10.1002/pamm.201210297.
[15] Shakhno S.M. Two-point method for solving nonlinear equation with nondifferentiable operator / S.M. Shakhno, H.P. Yarmola // Matematchni Studii. – 2011. – V. 36, №2. – P. 213–220. (In Ukrainian)
[16] Shakhno S.M. Two-step secant type method with approximation of the inverse operator / S.M. Shakhno, H.P. Yarmola // Carpathian Math. Publ. – 2013. – V. 5, № 1. – P. 150-155. (In Ukrainian)
[17] Ulm S. On iterative methods with successive approximation of the inverse operator. / S. Ulm // Izv. Acad. Nauk Est. SSR. Fiz. Mat. – 1967. – V. 6., № 4. – P. 403–411. (In Russian)
[18] Vaarmann O. On some iterative methods with successive approximation of the inverse operator I / O. Vaarmann // Izv. Acad. Nauk Est. SSR. Fiz. Mat. – 1968. – V. 17, № 4. – P. 379–387. (In Russian)
[19] Vaarmann O. On some iterative methods with successive approximation of the inverse operator II / O. Vaarmann // Izv. Acad. Nauk Est. SSR. Fiz. Mat. – 1969. – V. 18, № 1. – P. 14–21.(In Russian)
[20] Vasilyev F.P. On high-order methods for solving operator equations / F.P. Vasilyev, L.M. Khromova // Dokl. Nauk SSSR. – 1983. – V. 270. – P. 28-31. (In Russian)
[21] Verzhbitskiy V.M. Iterative methods with successive approximation of inverse operators / V.M. Verzhbitskiy // Izv. IMI UdGU. – 2006. – № 2(36). – P. 129–138. (In Russian)
DOI: http://dx.doi.org/10.30970/vam.2020.28.10973
Посилання
- Поки немає зовнішніх посилань.